por jamiel » Seg Mai 09, 2011 18:58
Como relacionar um número sem expoente com as potencias de base? Alguém pode me ajudar nessa?

16^x -16^x • 16^(-1) -10 = 4^x-1
Ou no lugar do 16, 4. Ou até mesmo 2 igual ao segundo termo. Realmente, não consigo integrar esse -10 na equação.
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por MarceloFantini » Seg Mai 09, 2011 20:40
Escreva tudo em potências de 2, e em seguida mude de variável: chame

de

(ou o que preferir). Terá uma equação polinomial que é mais tranquila de resolver. Lembre-se de eliminar o

dos expoentes, que nada mais é

, onde

é a base.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jamiel » Seg Mai 09, 2011 21:09

É isso q vc tá querendo dizer?
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por FilipeCaceres » Seg Mai 09, 2011 21:13
Isso mesmo, tente continuar.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por jamiel » Seg Mai 09, 2011 21:36
Caramba, não consigo passar daí!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por FilipeCaceres » Seg Mai 09, 2011 22:12
Percebi um errinho.
O correto é:

Assim temos,

Agora faça

Logo,



O resto fica como exercício.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por FilipeCaceres » Seg Mai 09, 2011 22:25

16^x -16^x • 16^(-1) -10 = 4^x-1
Observe que:


Para,

Temos,

Agora você tem que ver o que realmente queria.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por jamiel » Seg Mai 09, 2011 22:53
No gabarito, essa equação tem solução x=1. Caramba, tenho dar uma olhadinha mais nessas resoluções de vcs! Obrigado pela força.
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Exponencial - Problema 3
por jamiel » Ter Mai 10, 2011 14:03
- 2 Respostas
- 1773 Exibições
- Última mensagem por jamiel

Qua Mai 11, 2011 00:30
Sistemas de Equações
-
- Equação Exponencial - Problema 4
por jamiel » Sex Mai 13, 2011 03:00
- 7 Respostas
- 3926 Exibições
- Última mensagem por jamiel

Sex Mai 13, 2011 15:24
Sistemas de Equações
-
- Equação Exponencial - Problema 5
por jamiel » Sex Mai 13, 2011 15:42
- 7 Respostas
- 3623 Exibições
- Última mensagem por jamiel

Sex Mai 13, 2011 20:27
Sistemas de Equações
-
- Problema Com Inequação do Exponencial
por chenz » Sáb Jun 19, 2010 17:13
- 2 Respostas
- 1692 Exibições
- Última mensagem por chenz

Dom Jun 20, 2010 12:35
Funções
-
- Função Exponencial - problema 1
por jamiel » Sáb Mai 14, 2011 15:40
- 6 Respostas
- 2581 Exibições
- Última mensagem por jamiel

Dom Mai 15, 2011 10:40
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.