• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROGRESSÃO ARITMETICA

PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 17:07

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Ter Nov 29, 2011 19:12

Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 21:28

MarceloFantini escreveu:Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.




NÃO ENTENDI NADA SE POSSIVEL EXPLICAR PASSO A PASSO
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 00:21

Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:42

[quote="MarceloFantini"]Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Mas eu não tenho o valor de nehum termo então como au encontro o resultado?
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 21:46

O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:51

MarceloFantini escreveu:O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.


Desculpe mas eu não estou entendendo , quando o professor passou o conteudo eu estava internada no hospital , então ele me explicou por cima e estou procurando em livros mas está dificil, desculpa por estar incomodando.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 22:13

A soma de um único termo é o próprio primeiro termo, logo S_1 = \frac{1 + 5}{1} = 6 = a_1.

A soma dos dois primeiros termos é a_1 + a_2, logo S_2 = \frac{4+5}{2} = \frac{9}{2} = a_1 + a_2 = S_1+a_2 \implies a_2 = S_2 - S_1 = \frac{9}{2} - 6 = \frac{-3}{2}.

A soma dos três primeiros termos é S_3 = \frac{9+5}{3} = \frac{14}{3} = a_1 + a_2 + a_3 = S_2 + a_3 \implies a_3 = S_3 - S_2 = \frac{14}{3} - \frac{9}{2} = \frac{28 - 27}{6} = \frac{1}{6}.

A soma dos quatro primeiros termos é S_4 = \frac{16+5}{4} = a_1 + a_2 + a_3 + a_4 = S_3 + a_4 \implies a_4 = S_4 - S_3 = \frac{21}{4} - \frac{14}{3} = \frac{63 - 56}{12} = \frac{7}{12}.

Note que tudo isto depende se a minha interpretação do enunciado estiver correta, pois você disse:

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.


Se ele te dá o termo geral, basta substituir N pelo termo que você quer, por exemplo n = 2 significa o segundo termo, porém note que este não é o termo geral de uma progressão aritmética, portanto eu deduzi que o enunciado na verdade queira dizer que dada a soma da sequência definida pela relação, escrever os 5 primeiros termos da sequência, que não é necessariamente uma P.A.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?