• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROGRESSÃO ARITMETICA

PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 17:07

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Ter Nov 29, 2011 19:12

Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 21:28

MarceloFantini escreveu:Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.




NÃO ENTENDI NADA SE POSSIVEL EXPLICAR PASSO A PASSO
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 00:21

Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:42

[quote="MarceloFantini"]Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Mas eu não tenho o valor de nehum termo então como au encontro o resultado?
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 21:46

O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:51

MarceloFantini escreveu:O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.


Desculpe mas eu não estou entendendo , quando o professor passou o conteudo eu estava internada no hospital , então ele me explicou por cima e estou procurando em livros mas está dificil, desculpa por estar incomodando.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 22:13

A soma de um único termo é o próprio primeiro termo, logo S_1 = \frac{1 + 5}{1} = 6 = a_1.

A soma dos dois primeiros termos é a_1 + a_2, logo S_2 = \frac{4+5}{2} = \frac{9}{2} = a_1 + a_2 = S_1+a_2 \implies a_2 = S_2 - S_1 = \frac{9}{2} - 6 = \frac{-3}{2}.

A soma dos três primeiros termos é S_3 = \frac{9+5}{3} = \frac{14}{3} = a_1 + a_2 + a_3 = S_2 + a_3 \implies a_3 = S_3 - S_2 = \frac{14}{3} - \frac{9}{2} = \frac{28 - 27}{6} = \frac{1}{6}.

A soma dos quatro primeiros termos é S_4 = \frac{16+5}{4} = a_1 + a_2 + a_3 + a_4 = S_3 + a_4 \implies a_4 = S_4 - S_3 = \frac{21}{4} - \frac{14}{3} = \frac{63 - 56}{12} = \frac{7}{12}.

Note que tudo isto depende se a minha interpretação do enunciado estiver correta, pois você disse:

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.


Se ele te dá o termo geral, basta substituir N pelo termo que você quer, por exemplo n = 2 significa o segundo termo, porém note que este não é o termo geral de uma progressão aritmética, portanto eu deduzi que o enunciado na verdade queira dizer que dada a soma da sequência definida pela relação, escrever os 5 primeiros termos da sequência, que não é necessariamente uma P.A.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.