• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROGRESSÃO ARITMETICA

PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 17:07

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Ter Nov 29, 2011 19:12

Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Ter Nov 29, 2011 21:28

MarceloFantini escreveu:Isso é provavelmente a soma da sequência e não o termo geral.

Dica: para encontrar cada termo, faça S_{n+1} - S_n, isto é, a soma de n+1 termos menos a soma de n termos.




NÃO ENTENDI NADA SE POSSIVEL EXPLICAR PASSO A PASSO
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 00:21

Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:42

[quote="MarceloFantini"]Suponha que você tem uma soma de 5 termos S_5 = a_1 + a_2 + a_3 + a_4 + a_5. Você não sabe o valor deles individualmente, mas você sabe a soma. Agora, você quer descobrir o valor de a_5, sendo que você sabe calcular a soma para qualquer quantidade de termos. Ora, se fizermos (a_1 + a_2 + a_3 + a_4 + a_5) - (a_1 + a_2 + a_3 + a_4) encontraremos o desejado, mas isso é simplesmente fazer a soma dos cinco termos menos a soma dos quatro termos, logo S_{5} - S_4.

No caso do exercício, é análogo. Ele te dá a soma de uma quantidade arbitrária, n, de elementos. Ele quer que você encontre os cinco primeiros termos da sequência. Perceba que S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, e assim em diante. Usando o método que expliquei acima, você chegará na resposta.
Mas eu não tenho o valor de nehum termo então como au encontro o resultado?
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 21:46

O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PROGRESSÃO ARITMETICA

Mensagempor matem » Qua Nov 30, 2011 21:51

MarceloFantini escreveu:O enunciado parece ter dito que o valor da soma de N termos é S_n = \frac{n^2 +5}{n}, use isso juntamente com o que eu disse.


Desculpe mas eu não estou entendendo , quando o professor passou o conteudo eu estava internada no hospital , então ele me explicou por cima e estou procurando em livros mas está dificil, desculpa por estar incomodando.
matem
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Nov 28, 2011 18:04
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: PROGRESSÃO ARITMETICA

Mensagempor MarceloFantini » Qua Nov 30, 2011 22:13

A soma de um único termo é o próprio primeiro termo, logo S_1 = \frac{1 + 5}{1} = 6 = a_1.

A soma dos dois primeiros termos é a_1 + a_2, logo S_2 = \frac{4+5}{2} = \frac{9}{2} = a_1 + a_2 = S_1+a_2 \implies a_2 = S_2 - S_1 = \frac{9}{2} - 6 = \frac{-3}{2}.

A soma dos três primeiros termos é S_3 = \frac{9+5}{3} = \frac{14}{3} = a_1 + a_2 + a_3 = S_2 + a_3 \implies a_3 = S_3 - S_2 = \frac{14}{3} - \frac{9}{2} = \frac{28 - 27}{6} = \frac{1}{6}.

A soma dos quatro primeiros termos é S_4 = \frac{16+5}{4} = a_1 + a_2 + a_3 + a_4 = S_3 + a_4 \implies a_4 = S_4 - S_3 = \frac{21}{4} - \frac{14}{3} = \frac{63 - 56}{12} = \frac{7}{12}.

Note que tudo isto depende se a minha interpretação do enunciado estiver correta, pois você disse:

por favor me ajudem na sequencia definida por an=n²+5 dividido por n, escrver os 5 primeiros termos da pa.


Se ele te dá o termo geral, basta substituir N pelo termo que você quer, por exemplo n = 2 significa o segundo termo, porém note que este não é o termo geral de uma progressão aritmética, portanto eu deduzi que o enunciado na verdade queira dizer que dada a soma da sequência definida pela relação, escrever os 5 primeiros termos da sequência, que não é necessariamente uma P.A.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D