Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Balanar » Sáb Ago 07, 2010 17:58
IME-96
Seja f uma função real tal que

a

![f(x+a)=\frac{1}{2}+\sqrt[]{f(x)-{\left[ f(x) \right]}^{2}}} f(x+a)=\frac{1}{2}+\sqrt[]{f(x)-{\left[ f(x) \right]}^{2}}}](/latexrender/pictures/ea892c68adbdd818a1fec22c9e3b64cf.png)
, f é periódica?
Justifique:
Resposta:
f é periódica de período 2a.
-
Balanar
- Usuário Parceiro

-
- Mensagens: 72
- Registrado em: Qua Dez 03, 2008 07:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Douglasm » Sáb Ago 28, 2010 17:02
Para que uma função seja periódica, deve ser válida a seguinte igualdade:

Temos, portanto, que tentar expressar a função desejada do modo acima. Começaremos organizando-a de outro modo:
![f(x+a) = \frac{1}{2} + \sqrt{f(x) - [f(x)]^2} \;\therefore f(x+a) = \frac{1}{2} + \sqrt{f(x) - [f(x)]^2} \;\therefore](/latexrender/pictures/8369cc957a4a379a926adfa8ad9a81fd.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = f(x) - [f(x)]^2 \;\therefore \left[f(x+a) - \frac{1}{2}\right]^2 = f(x) - [f(x)]^2 \;\therefore](/latexrender/pictures/67934cfc9b0bbec125b94f767a014717.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \frac{1}{4} + f(x) - [f(x)]^2 \;\therefore \left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \frac{1}{4} + f(x) - [f(x)]^2 \;\therefore](/latexrender/pictures/14148f48f94826039e9a56c7ce51745d.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \left[f(x) - \frac{1}{2}\right]^2 \;\fbox{1} \left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \left[f(x) - \frac{1}{2}\right]^2 \;\fbox{1}](/latexrender/pictures/69cdded71ee4f383679fef1089e80d0e.png)
Para facilitar, vamos fazer a seguinte substituição:

![\left[g(x+a)\right]^2 = \frac{1}{4} - \left[g(x)\right]^2 \left[g(x+a)\right]^2 = \frac{1}{4} - \left[g(x)\right]^2](/latexrender/pictures/5bc54eb052657fe457d327269dd512f7.png)
Se agora considerarmos a função para
x = x + a, teremos:
![\left[g(x+2a)\right]^2 = \frac{1}{4} - \left[g(x + a)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \frac{1}{4} - \left[g(x + a)\right]^2 \;\therefore](/latexrender/pictures/d7a0bf58ea4ccbea0cc42e1cc289aa0d.png)
![\left[g(x+2a)\right]^2 = \frac{1}{4} - \frac{1}{4} + \left[g(x)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \frac{1}{4} - \frac{1}{4} + \left[g(x)\right]^2 \;\therefore](/latexrender/pictures/258ee2672309e983bba4e4d8bc92be20.png)
![\left[g(x+2a)\right]^2 = \left[g(x)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \left[g(x)\right]^2 \;\therefore](/latexrender/pictures/3d8cabb06d1504c04b8d98621185d0ed.png)
Para justificar o último passo, note (através de
1) que:

Consequentemente:
Isso é o bastante para justificar que
g(x+2a) = g(x). Como
g(x) = f(x) - 1/2 , analisando graficamente, notamos que o termo
-1/2 só desloca o gráfico de
f(x) sem alterar sua forma, tampouco sua periodicidade. Demonstramos então que
f(x) é uma função periódica cujo período é
2a.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Balanar » Sáb Ago 28, 2010 17:50
Brilhante resposta, parabéns.
-
Balanar
- Usuário Parceiro

-
- Mensagens: 72
- Registrado em: Qua Dez 03, 2008 07:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Douglasm » Sáb Ago 28, 2010 17:59
Que nada, eu já conhecia esse tipo de questão. =)
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por kamillanjb » Ter Mar 15, 2011 22:57
MAs tá muito bem explicado. Sério mesmo. De grande ajuda.
-
kamillanjb
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Fev 16, 2011 10:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- P.G. Dízima Periódica
por Rafael16 » Qua Jul 18, 2012 19:48
- 3 Respostas
- 8013 Exibições
- Última mensagem por Russman

Qua Jul 18, 2012 21:20
Progressões
-
- Dizima periodica composta
por creberson » Sex Mai 24, 2019 11:03
- 1 Respostas
- 9419 Exibições
- Última mensagem por DanielFerreira

Qui Set 12, 2019 23:19
Conjuntos
-
- [Sequência convergente e periódica ] Prove ...
por e8group » Seg Jan 20, 2014 23:45
- 0 Respostas
- 8375 Exibições
- Última mensagem por e8group

Seg Jan 20, 2014 23:45
Sequências
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5091 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
-
- [plano tangente a função de duas variaveis dada por função]
por isaac naruto » Qui Dez 31, 2015 16:35
- 0 Respostas
- 4261 Exibições
- Última mensagem por isaac naruto

Qui Dez 31, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.