• Anúncio Global
    Respostas
    Exibições
    Última mensagem

IME-96 Função periódica

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

IME-96 Função periódica

Mensagempor Balanar » Sáb Ago 07, 2010 17:58

IME-96

Seja f uma função real tal que \forall a \in \Re

f(x+a)=\frac{1}{2}+\sqrt[]{f(x)-{\left[ f(x) \right]}^{2}}} , f é periódica?

Justifique:

Resposta:
f é periódica de período 2a.
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: IME-96 Função periódica

Mensagempor Douglasm » Sáb Ago 28, 2010 17:02

Para que uma função seja periódica, deve ser válida a seguinte igualdade:

f(x+P) = f(x) \;\mbox{(P = periodo)}

Temos, portanto, que tentar expressar a função desejada do modo acima. Começaremos organizando-a de outro modo:

f(x+a) = \frac{1}{2} + \sqrt{f(x) - [f(x)]^2} \;\therefore

\left[f(x+a) - \frac{1}{2}\right]^2 = f(x) - [f(x)]^2 \;\therefore

\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \frac{1}{4} + f(x) - [f(x)]^2 \;\therefore

\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \left[f(x) - \frac{1}{2}\right]^2 \;\fbox{1}

Para facilitar, vamos fazer a seguinte substituição:

g(x) = f(x) - \frac{1}{2}\;\therefore

\left[g(x+a)\right]^2 = \frac{1}{4} - \left[g(x)\right]^2

Se agora considerarmos a função para x = x + a, teremos:

\left[g(x+2a)\right]^2 = \frac{1}{4} - \left[g(x + a)\right]^2 \;\therefore

\left[g(x+2a)\right]^2 = \frac{1}{4} - \frac{1}{4} + \left[g(x)\right]^2 \;\therefore

\left[g(x+2a)\right]^2 = \left[g(x)\right]^2 \;\therefore

g(x + 2a) = g(x)

Para justificar o último passo, note (através de 1) que:

\frac{1}{2} \leq f(x) \leq 1

Consequentemente:

0 \leq g(x) \leq \frac{1}{2}

Isso é o bastante para justificar que g(x+2a) = g(x). Como g(x) = f(x) - 1/2 , analisando graficamente, notamos que o termo -1/2 só desloca o gráfico de f(x) sem alterar sua forma, tampouco sua periodicidade. Demonstramos então que f(x) é uma função periódica cujo período é 2a.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: IME-96 Função periódica

Mensagempor Balanar » Sáb Ago 28, 2010 17:50

Brilhante resposta, parabéns.
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: IME-96 Função periódica

Mensagempor Douglasm » Sáb Ago 28, 2010 17:59

Que nada, eu já conhecia esse tipo de questão. =)
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: IME-96 Função periódica

Mensagempor kamillanjb » Ter Mar 15, 2011 22:57

MAs tá muito bem explicado. Sério mesmo. De grande ajuda.
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.