Seja f uma função real tal que
a

, f é periódica?Justifique:
Resposta:
f é periódica de período 2a.
a

, f é periódica?

![f(x+a) = \frac{1}{2} + \sqrt{f(x) - [f(x)]^2} \;\therefore f(x+a) = \frac{1}{2} + \sqrt{f(x) - [f(x)]^2} \;\therefore](/latexrender/pictures/8369cc957a4a379a926adfa8ad9a81fd.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = f(x) - [f(x)]^2 \;\therefore \left[f(x+a) - \frac{1}{2}\right]^2 = f(x) - [f(x)]^2 \;\therefore](/latexrender/pictures/67934cfc9b0bbec125b94f767a014717.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \frac{1}{4} + f(x) - [f(x)]^2 \;\therefore \left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \frac{1}{4} + f(x) - [f(x)]^2 \;\therefore](/latexrender/pictures/14148f48f94826039e9a56c7ce51745d.png)
![\left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \left[f(x) - \frac{1}{2}\right]^2 \;\fbox{1} \left[f(x+a) - \frac{1}{2}\right]^2 = \frac{1}{4} - \left[f(x) - \frac{1}{2}\right]^2 \;\fbox{1}](/latexrender/pictures/69cdded71ee4f383679fef1089e80d0e.png)

![\left[g(x+a)\right]^2 = \frac{1}{4} - \left[g(x)\right]^2 \left[g(x+a)\right]^2 = \frac{1}{4} - \left[g(x)\right]^2](/latexrender/pictures/5bc54eb052657fe457d327269dd512f7.png)
![\left[g(x+2a)\right]^2 = \frac{1}{4} - \left[g(x + a)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \frac{1}{4} - \left[g(x + a)\right]^2 \;\therefore](/latexrender/pictures/d7a0bf58ea4ccbea0cc42e1cc289aa0d.png)
![\left[g(x+2a)\right]^2 = \frac{1}{4} - \frac{1}{4} + \left[g(x)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \frac{1}{4} - \frac{1}{4} + \left[g(x)\right]^2 \;\therefore](/latexrender/pictures/258ee2672309e983bba4e4d8bc92be20.png)
![\left[g(x+2a)\right]^2 = \left[g(x)\right]^2 \;\therefore \left[g(x+2a)\right]^2 = \left[g(x)\right]^2 \;\therefore](/latexrender/pictures/3d8cabb06d1504c04b8d98621185d0ed.png)





Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, mas negativo pois tem de ser no quarto quadrante. Se
, então
. Como módulo é um:
.
.