• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números complexos

números complexos

Mensagempor jordyson rocha » Qua Jan 30, 2013 12:17

Considerando-se que o afixo do número complexo z = a + bi é ponto da reta y = 5x, pode-se afirmar
que o afixo do número complexo ? iz é ponto da reta

01) y ? x = 0.
02) y ? 3x = 0.
03) y + 5x = 0.
04) y - x/5 = 0 .
05) y + x/5 = 0.

Olha eu não entendi como eu uso a função, de primeiro grau, na questão e nem pq o "y" não tem coeficiente. muito obrigado pela resposta
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: números complexos

Mensagempor young_jedi » Qua Jan 30, 2013 17:31

se o afixo é dado pela função então z sera

z=x+5x.i

e

-i.z=-i.(x+5x.i)

-i.z=5x-x.i

tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: números complexos

Mensagempor jordyson rocha » Qua Jan 30, 2013 18:13

olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: números complexos

Mensagempor Russman » Qua Jan 30, 2013 18:26

o afixo de um número complexo z=a+bi é o ponto de coordenadas (a,b) no plano de Argand-Gauss.

Assim, o valor a representa uma coordenada x e o valor b uma y.

Se y=y(x), isto é, se y é função de x e , no caso, y(x) = 5x, então todos os complexos que estão sobre esta reta( que são pontos dessa reta) são da forma

z = x+yi \Rightarrow  z = x +5xi.


Agora, o número complexo w = -iz é da forma w = -i(x+yi) = -ix + y = -ix + 5x = 5x - ix.

Ou seja, y(5x) = -x de forma que y(x) = -x/5 é a reta do que contem os afixos de w.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: números complexos

Mensagempor Russman » Qua Jan 30, 2013 18:33

jordyson rocha escreveu:olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!


Não! O número complexo é da forma z=a+bi onde esses valores a e b da forma (a,b) podem representar um ponto em um plano. E disto podemos imaginar uma função a qual esse ponto pertença. Essa é a ideia.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: números complexos

Mensagempor jordyson rocha » Qui Jan 31, 2013 17:57

Cara muito obrigado vlw msm, essa questão vai me ajudar bastante no entendimento de outras.
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59