• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números complexos

números complexos

Mensagempor jordyson rocha » Qua Jan 30, 2013 12:17

Considerando-se que o afixo do número complexo z = a + bi é ponto da reta y = 5x, pode-se afirmar
que o afixo do número complexo ? iz é ponto da reta

01) y ? x = 0.
02) y ? 3x = 0.
03) y + 5x = 0.
04) y - x/5 = 0 .
05) y + x/5 = 0.

Olha eu não entendi como eu uso a função, de primeiro grau, na questão e nem pq o "y" não tem coeficiente. muito obrigado pela resposta
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: números complexos

Mensagempor young_jedi » Qua Jan 30, 2013 17:31

se o afixo é dado pela função então z sera

z=x+5x.i

e

-i.z=-i.(x+5x.i)

-i.z=5x-x.i

tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: números complexos

Mensagempor jordyson rocha » Qua Jan 30, 2013 18:13

olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: números complexos

Mensagempor Russman » Qua Jan 30, 2013 18:26

o afixo de um número complexo z=a+bi é o ponto de coordenadas (a,b) no plano de Argand-Gauss.

Assim, o valor a representa uma coordenada x e o valor b uma y.

Se y=y(x), isto é, se y é função de x e , no caso, y(x) = 5x, então todos os complexos que estão sobre esta reta( que são pontos dessa reta) são da forma

z = x+yi \Rightarrow  z = x +5xi.


Agora, o número complexo w = -iz é da forma w = -i(x+yi) = -ix + y = -ix + 5x = 5x - ix.

Ou seja, y(5x) = -x de forma que y(x) = -x/5 é a reta do que contem os afixos de w.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: números complexos

Mensagempor Russman » Qua Jan 30, 2013 18:33

jordyson rocha escreveu:olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!


Não! O número complexo é da forma z=a+bi onde esses valores a e b da forma (a,b) podem representar um ponto em um plano. E disto podemos imaginar uma função a qual esse ponto pertença. Essa é a ideia.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: números complexos

Mensagempor jordyson rocha » Qui Jan 31, 2013 17:57

Cara muito obrigado vlw msm, essa questão vai me ajudar bastante no entendimento de outras.
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}