• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 02:42

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}

Desculpe, coloquei um valor equivocado
a verdadeira expressão seria esta aqui em cima.

Obrigado
Editado pela última vez por Claudin em Ter Ago 02, 2011 15:50, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:25

Olá Claudin,

Teste fazer usando o mesmo que foi feito aqui

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Guill » Ter Ago 02, 2011 15:41

\lim_{x\rightarrow-1}\frac{\sqrt[3]{{x}^{3}+1}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{(x+1)({x}^{2}-x+1)}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{({x}^{2}-x+1)}}{{x+1}^{\frac{2}{3}}}


Substituindo os valores:

\lim_{x\rightarrow-1}\frac{\sqrt[3]{3}}{0}

\propto
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 16:09

Já tentei de várias formas mas não consigo!

Tenho que começar assim?

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}\Rightarrow\sqrt[3]{u} onde u=\frac{x^3+1}{x+1} e x\neq-1

Mas não consigo a resposta correta!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 16:46

Olá Claudin,

Para está questão basta fazer o seguinte,
x^3+1=(x+1)(x^2-x+1)

Logo,
\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}=\lim_{x\rightarrow-1}\sqrt[3]{\frac{\cancel{(x+1)}(x^2-x+1)}{\cancel{(x+1)}}}, pois x\neq -1.

Assim temos,
\lim_{x\rightarrow-1}\sqrt[3]{x^2-x+1}=\sqrt[3]{(-1)^2+1+1}=\boxed{\sqrt[3]{3}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:25

Obrigado :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}