• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 02:42

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}

Desculpe, coloquei um valor equivocado
a verdadeira expressão seria esta aqui em cima.

Obrigado
Editado pela última vez por Claudin em Ter Ago 02, 2011 15:50, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:25

Olá Claudin,

Teste fazer usando o mesmo que foi feito aqui

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Guill » Ter Ago 02, 2011 15:41

\lim_{x\rightarrow-1}\frac{\sqrt[3]{{x}^{3}+1}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{(x+1)({x}^{2}-x+1)}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{({x}^{2}-x+1)}}{{x+1}^{\frac{2}{3}}}


Substituindo os valores:

\lim_{x\rightarrow-1}\frac{\sqrt[3]{3}}{0}

\propto
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 16:09

Já tentei de várias formas mas não consigo!

Tenho que começar assim?

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}\Rightarrow\sqrt[3]{u} onde u=\frac{x^3+1}{x+1} e x\neq-1

Mas não consigo a resposta correta!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 16:46

Olá Claudin,

Para está questão basta fazer o seguinte,
x^3+1=(x+1)(x^2-x+1)

Logo,
\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}=\lim_{x\rightarrow-1}\sqrt[3]{\frac{\cancel{(x+1)}(x^2-x+1)}{\cancel{(x+1)}}}, pois x\neq -1.

Assim temos,
\lim_{x\rightarrow-1}\sqrt[3]{x^2-x+1}=\sqrt[3]{(-1)^2+1+1}=\boxed{\sqrt[3]{3}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:25

Obrigado :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}