• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 02:42

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}

Desculpe, coloquei um valor equivocado
a verdadeira expressão seria esta aqui em cima.

Obrigado
Editado pela última vez por Claudin em Ter Ago 02, 2011 15:50, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:25

Olá Claudin,

Teste fazer usando o mesmo que foi feito aqui

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Guill » Ter Ago 02, 2011 15:41

\lim_{x\rightarrow-1}\frac{\sqrt[3]{{x}^{3}+1}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{(x+1)({x}^{2}-x+1)}}{x+1}

\lim_{x\rightarrow-1}\frac{\sqrt[3]{({x}^{2}-x+1)}}{{x+1}^{\frac{2}{3}}}


Substituindo os valores:

\lim_{x\rightarrow-1}\frac{\sqrt[3]{3}}{0}

\propto
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 16:09

Já tentei de várias formas mas não consigo!

Tenho que começar assim?

\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}\Rightarrow\sqrt[3]{u} onde u=\frac{x^3+1}{x+1} e x\neq-1

Mas não consigo a resposta correta!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 16:46

Olá Claudin,

Para está questão basta fazer o seguinte,
x^3+1=(x+1)(x^2-x+1)

Logo,
\lim_{x\rightarrow-1}\sqrt[3]{\frac{x^3+1}{x+1}}=\lim_{x\rightarrow-1}\sqrt[3]{\frac{\cancel{(x+1)}(x^2-x+1)}{\cancel{(x+1)}}}, pois x\neq -1.

Assim temos,
\lim_{x\rightarrow-1}\sqrt[3]{x^2-x+1}=\sqrt[3]{(-1)^2+1+1}=\boxed{\sqrt[3]{3}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:25

Obrigado :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.