por jordyson rocha » Qua Jan 30, 2013 12:17
Considerando-se que o afixo do número complexo z = a + bi é ponto da reta y = 5x, pode-se afirmar
que o afixo do número complexo ? iz é ponto da reta
01) y ? x = 0.
02) y ? 3x = 0.
03) y + 5x = 0.
04) y - x/5 = 0 .
05) y + x/5 = 0.
Olha eu não entendi como eu uso a função, de primeiro grau, na questão e nem pq o "y" não tem coeficiente. muito obrigado pela resposta
-
jordyson rocha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Jan 30, 2013 11:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Qua Jan 30, 2013 17:31
se o afixo é dado pela função então z sera

e


tente concluir e comente as duvidas
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por jordyson rocha » Qua Jan 30, 2013 18:13
olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!
-
jordyson rocha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Jan 30, 2013 11:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Qua Jan 30, 2013 18:26
o afixo de um número complexo

é o ponto de coordenadas

no plano de Argand-Gauss.
Assim, o valor

representa uma coordenada

e o valor

uma

.
Se

, isto é, se

é função de

e , no caso,

, então todos os complexos que estão sobre esta reta( que são pontos dessa reta) são da forma

.
Agora, o número complexo

é da forma

.
Ou seja,

de forma que

é a reta do que contem os afixos de

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Qua Jan 30, 2013 18:33
jordyson rocha escreveu:olha não entendo uma coisa...A reta segue a função y = ax + b só que o "b" vale 0 e isso eu não consigo aplicar na questão.Não estou conseguindo terminar. Em nenhum lugar eu to vendo algo parecido com isso!
Não! O número complexo é da forma

onde esses valores a e b da forma

podem representar um ponto em um plano. E disto podemos imaginar uma função a qual esse ponto pertença. Essa é a ideia.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jordyson rocha » Qui Jan 31, 2013 17:57
Cara muito obrigado vlw msm, essa questão vai me ajudar bastante no entendimento de outras.
-
jordyson rocha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Jan 30, 2013 11:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 15984 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Numeros complexos!
por Estela » Seg Mar 17, 2008 00:57
- 7 Respostas
- 12033 Exibições
- Última mensagem por andegledson

Seg Nov 02, 2009 21:41
Números Complexos
-
- Números Complexos
por michelle » Dom Ago 31, 2008 15:35
- 3 Respostas
- 9315 Exibições
- Última mensagem por admin

Dom Ago 31, 2008 21:00
Números Complexos
-
- Números Complexos
por Cleyson007 » Qui Mai 14, 2009 13:57
- 7 Respostas
- 11518 Exibições
- Última mensagem por Cleyson007

Sáb Mai 16, 2009 11:04
Números Complexos
-
- NUMEROS COMPLEXOS
por lieberth » Sáb Jun 13, 2009 13:48
- 1 Respostas
- 3893 Exibições
- Última mensagem por Marcampucio

Sáb Jun 13, 2009 14:35
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.