• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adiçao de Raizes

Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 18:38

Conheço a regra que diz que so é possivel somar raizes q tenham o mesmo indice e mesmo radicando, porem na minha apostila, me deparei com um exercicio, que diz...Calcule: a)\sqrt[1]{5}+\sqrt[]{4}+\sqrt[3]{27}+\sqrt[4]{0}+\sqrt[5]{-1}= Eu tentei simplificar ao maximo para resolver, e mesmo assim fiquei com duvidas, e nao consegui ! Podem me ajudar por favor?! Grata
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 19:27

Lembre-se que 4 = 2^2, 27 = 3^3 e que -1^5 = -1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 19:45

Sendo assim calculei que: \sqrt[1]{5}+\sqrt[]{{2}^{2}}+\sqrt[3]{{3}^{3}}+\sqrt[4]{0}+\sqrt[5]{-1}= \sqrt[1]{5}+2+3+0-{1}^{5}=\sqrt[1]{5}+5-1=\sqrt[1]{5}+4=5+4=+9. Esta correto ou falhei no caminho? Obrigada!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 19:50

Está correto!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Sáb Mar 05, 2011 19:56

Como é gostoso quando conseguimos resolver! Para mim matematica é uma barreira pela qual decidi derrubar, e vencer os medos. Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor MarceloFantini » Sáb Mar 05, 2011 20:06

Qualquer dúvida, é só postar novamente. Desejo sucesso! Abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor LuizAquino » Dom Mar 06, 2011 00:53

vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.

Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Dom Mar 06, 2011 00:57

Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adiçao de Raizes

Mensagempor vanessitah » Dom Mar 06, 2011 00:58

LuizAquino escreveu:
vanessitah escreveu:Estou sem estudar a 12 anos. E vou prestar vestibular, por isto minha dificuldade começa nas basicas. Mas vou superar, e agradeço o incentivo. Abçs.

Acredito que o tópico a seguir possa lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818


Dica muito valiosa, toda informaçao é bem vinda neste momento! Obrigada, ja esta nos meus Favoritos!
vanessitah
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 05, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: