por DIego Gomes » Seg Dez 16, 2013 23:05
Seja a e b números inteiros.
Prove que a² = 0, então a = 0.
Dúvida:
se considero a² = a * a e sendo a * a = 0, se dividir ambos por a, vou ter uma indeterminação? pois a = 0.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por Pessoa Estranha » Seg Dez 16, 2013 23:23
Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:30
Pessoa Estranha escreveu:Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

Não tinha pensado desta forma. Só tem um problema, é que no capítulo deste exercício não foi definido expoente fracionário. O que tem definido é somente as propriedades de soma e produto.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por e8group » Seg Dez 16, 2013 23:36
Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:42
santhiago escreveu:Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
BOA !!!! Pelo o elemento neutro !!!!!!!!
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teoremas e corolários para séries
por Aprendiz2012 » Qua Out 03, 2012 10:51
- 1 Respostas
- 1474 Exibições
- Última mensagem por young_jedi

Qua Out 03, 2012 11:04
Sequências
-
- Limite de Funções trigonométricas - Uso dos Teoremas fundame
por ARCS » Qua Jan 05, 2011 21:23
- 1 Respostas
- 1471 Exibições
- Última mensagem por OtavioBonassi

Qua Jan 05, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Proposições
por feraferrari » Qui Fev 24, 2011 15:12
- 3 Respostas
- 2724 Exibições
- Última mensagem por LuizAquino

Sex Fev 25, 2011 08:54
Funções
-
- Proposições com variáveis
por rrt » Dom Jul 28, 2013 20:57
- 5 Respostas
- 3394 Exibições
- Última mensagem por rrt

Seg Jul 29, 2013 18:32
Funções
-
- considere as proposiçoes
por flavio neves » Qua Fev 24, 2016 15:10
- 0 Respostas
- 1358 Exibições
- Última mensagem por flavio neves

Qua Fev 24, 2016 15:10
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.