por DIego Gomes » Seg Dez 16, 2013 23:05
Seja a e b números inteiros.
Prove que a² = 0, então a = 0.
Dúvida:
se considero a² = a * a e sendo a * a = 0, se dividir ambos por a, vou ter uma indeterminação? pois a = 0.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por Pessoa Estranha » Seg Dez 16, 2013 23:23
Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:30
Pessoa Estranha escreveu:Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

Não tinha pensado desta forma. Só tem um problema, é que no capítulo deste exercício não foi definido expoente fracionário. O que tem definido é somente as propriedades de soma e produto.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por e8group » Seg Dez 16, 2013 23:36
Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:42
santhiago escreveu:Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
BOA !!!! Pelo o elemento neutro !!!!!!!!
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teoremas e corolários para séries
por Aprendiz2012 » Qua Out 03, 2012 10:51
- 1 Respostas
- 1370 Exibições
- Última mensagem por young_jedi

Qua Out 03, 2012 11:04
Sequências
-
- Limite de Funções trigonométricas - Uso dos Teoremas fundame
por ARCS » Qua Jan 05, 2011 21:23
- 1 Respostas
- 1382 Exibições
- Última mensagem por OtavioBonassi

Qua Jan 05, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Proposições
por feraferrari » Qui Fev 24, 2011 15:12
- 3 Respostas
- 2496 Exibições
- Última mensagem por LuizAquino

Sex Fev 25, 2011 08:54
Funções
-
- Proposições com variáveis
por rrt » Dom Jul 28, 2013 20:57
- 5 Respostas
- 3151 Exibições
- Última mensagem por rrt

Seg Jul 29, 2013 18:32
Funções
-
- considere as proposiçoes
por flavio neves » Qua Fev 24, 2016 15:10
- 0 Respostas
- 1270 Exibições
- Última mensagem por flavio neves

Qua Fev 24, 2016 15:10
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.