• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Demostrações]Demostrações de alguns teoremas e proposições

[Demostrações]Demostrações de alguns teoremas e proposições

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:05

Seja a e b números inteiros.
Prove que a² = 0, então a = 0.
Dúvida:
se considero a² = a * a e sendo a * a = 0, se dividir ambos por a, vou ter uma indeterminação? pois a = 0.
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor Pessoa Estranha » Seg Dez 16, 2013 23:23

Olá !

Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow  a = 0.

Espero ter ajudado.

:y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:30

Pessoa Estranha escreveu:Olá !

Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow  a = 0.

Espero ter ajudado.

:y:


Não tinha pensado desta forma. Só tem um problema, é que no capítulo deste exercício não foi definido expoente fracionário. O que tem definido é somente as propriedades de soma e produto.
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor e8group » Seg Dez 16, 2013 23:36

Há varias formas . Uma delas supor absurdo que a \neq 0 , e assim existe a^{-1} tal que

1 = a\cdot a^{-1}  =  1 \cdot ( a\cdot a^{-1} )  =  ( a\cdot a^{-1} ) \cdot (a \cdot a^{-1})  = a^2 \cdot a^{-2}  = 0 \cdot a^{-2} = 0 ,contradição .

Nota para quaisquer \alpha \in \mathbb{R}  , \alpha \cdot 0 = 0 pois , \alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 .

Alternativamente ,pelo elemento neutro aditivo

a = a + 0 = a + a^2 = a + a\cdot a = a (1+a) . Daí segue pela unicidade do elemento neutro da multiplicação que

a+1 = 1 que novamente por unicidade ,desta vez do 0 que resulta a = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:42

santhiago escreveu:Há varias formas . Uma delas supor absurdo que a \neq 0 , e assim existe a^{-1} tal que

1 = a\cdot a^{-1}  =  1 \cdot ( a\cdot a^{-1} )  =  ( a\cdot a^{-1} ) \cdot (a \cdot a^{-1})  = a^2 \cdot a^{-2}  = 0 \cdot a^{-2} = 0 ,contradição .

Nota para quaisquer \alpha \in \mathbb{R}  , \alpha \cdot 0 = 0 pois , \alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 .

Alternativamente ,pelo elemento neutro aditivo

a = a + 0 = a + a^2 = a + a\cdot a = a (1+a) . Daí segue pela unicidade do elemento neutro da multiplicação que

a+1 = 1 que novamente por unicidade ,desta vez do 0 que resulta a = 0 .



BOA !!!! Pelo o elemento neutro !!!!!!!!
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.