• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Demostrações]Demostrações de alguns teoremas e proposições

[Demostrações]Demostrações de alguns teoremas e proposições

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:05

Seja a e b números inteiros.
Prove que a² = 0, então a = 0.
Dúvida:
se considero a² = a * a e sendo a * a = 0, se dividir ambos por a, vou ter uma indeterminação? pois a = 0.
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor Pessoa Estranha » Seg Dez 16, 2013 23:23

Olá !

Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow  a = 0.

Espero ter ajudado.

:y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:30

Pessoa Estranha escreveu:Olá !

Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow  a = 0.

Espero ter ajudado.

:y:


Não tinha pensado desta forma. Só tem um problema, é que no capítulo deste exercício não foi definido expoente fracionário. O que tem definido é somente as propriedades de soma e produto.
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor e8group » Seg Dez 16, 2013 23:36

Há varias formas . Uma delas supor absurdo que a \neq 0 , e assim existe a^{-1} tal que

1 = a\cdot a^{-1}  =  1 \cdot ( a\cdot a^{-1} )  =  ( a\cdot a^{-1} ) \cdot (a \cdot a^{-1})  = a^2 \cdot a^{-2}  = 0 \cdot a^{-2} = 0 ,contradição .

Nota para quaisquer \alpha \in \mathbb{R}  , \alpha \cdot 0 = 0 pois , \alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 .

Alternativamente ,pelo elemento neutro aditivo

a = a + 0 = a + a^2 = a + a\cdot a = a (1+a) . Daí segue pela unicidade do elemento neutro da multiplicação que

a+1 = 1 que novamente por unicidade ,desta vez do 0 que resulta a = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Demostrações]Demostrações de alguns teoremas e proposiç

Mensagempor DIego Gomes » Seg Dez 16, 2013 23:42

santhiago escreveu:Há varias formas . Uma delas supor absurdo que a \neq 0 , e assim existe a^{-1} tal que

1 = a\cdot a^{-1}  =  1 \cdot ( a\cdot a^{-1} )  =  ( a\cdot a^{-1} ) \cdot (a \cdot a^{-1})  = a^2 \cdot a^{-2}  = 0 \cdot a^{-2} = 0 ,contradição .

Nota para quaisquer \alpha \in \mathbb{R}  , \alpha \cdot 0 = 0 pois , \alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0 .

Alternativamente ,pelo elemento neutro aditivo

a = a + 0 = a + a^2 = a + a\cdot a = a (1+a) . Daí segue pela unicidade do elemento neutro da multiplicação que

a+1 = 1 que novamente por unicidade ,desta vez do 0 que resulta a = 0 .



BOA !!!! Pelo o elemento neutro !!!!!!!!
DIego Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 16, 2013 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: