• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio x² -4/x - 1

Domínio x² -4/x - 1

Mensagempor virginia » Qui Abr 25, 2013 11:21

A minha resposta não está batendo com o livro me ajudem.
Se f(x):\frac{{x}^{2}-4}{x-1}

sendo f(\frac{1}{t}) a minha resposta desse deu \frac{1-4{t}^{2}}{t-{t}^{2}} e a do livro está \frac{1-4t}{t-{t}^{2}}

e f(\frac{1}{2}) a minha resposta deu \frac{15}{6} e a do livro \frac{15}{2}

Gostaria de saber onde eu errei.
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:45

Virgínia,
fica difícil encontrar o erro, pois não postou o desenvolvimento de suas contas!
Vou ajudar-te com a primeira, mas, caso não consiga a outra retorne com as contas, ok?!

Segue,

\\ f(x) = \frac{x^2 - 4}{x - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\left ( \frac{1}{t} \right )^2 - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \div \frac{1 - t}{t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \times \frac{t}{1 - t}

\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{\cancel{t^2}^{t}} \times \frac{\cancel{t}^{1}}{1 - t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t} \times \frac{1}{1 - t} \\\\\\ \boxed{f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t - t^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sex Abr 26, 2013 13:27

Boa tarde, então a resposta do livro está errada não é, pois a minha resposta deu exatamente essa conforme. Já a segunda segue o desenvolvimento abaixo.

f(\frac{1}{2}= \frac{\frac{{1}^{2}}{{2}^{2}-4}}{\frac{1}{2}-2}

= \frac{\frac{1}{4}-4}{\frac{-3}{2}}

= \frac{\frac{-15}{4}}{\frac{-3}{2}}

= \frac{15}{4}\ * \frac{2}{3}

resposta deu 15 sobre 6 e a do livro é 15 sobre 2. Não soube colocar corretamente as fórmulas mais acredito que dá para entender.

Att,

Virginia
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Sex Abr 26, 2013 20:17

Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sáb Abr 27, 2013 01:17

Obrigada.
danjr5 escreveu:Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.