• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio x² -4/x - 1

Domínio x² -4/x - 1

Mensagempor virginia » Qui Abr 25, 2013 11:21

A minha resposta não está batendo com o livro me ajudem.
Se f(x):\frac{{x}^{2}-4}{x-1}

sendo f(\frac{1}{t}) a minha resposta desse deu \frac{1-4{t}^{2}}{t-{t}^{2}} e a do livro está \frac{1-4t}{t-{t}^{2}}

e f(\frac{1}{2}) a minha resposta deu \frac{15}{6} e a do livro \frac{15}{2}

Gostaria de saber onde eu errei.
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:45

Virgínia,
fica difícil encontrar o erro, pois não postou o desenvolvimento de suas contas!
Vou ajudar-te com a primeira, mas, caso não consiga a outra retorne com as contas, ok?!

Segue,

\\ f(x) = \frac{x^2 - 4}{x - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\left ( \frac{1}{t} \right )^2 - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \div \frac{1 - t}{t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \times \frac{t}{1 - t}

\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{\cancel{t^2}^{t}} \times \frac{\cancel{t}^{1}}{1 - t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t} \times \frac{1}{1 - t} \\\\\\ \boxed{f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t - t^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sex Abr 26, 2013 13:27

Boa tarde, então a resposta do livro está errada não é, pois a minha resposta deu exatamente essa conforme. Já a segunda segue o desenvolvimento abaixo.

f(\frac{1}{2}= \frac{\frac{{1}^{2}}{{2}^{2}-4}}{\frac{1}{2}-2}

= \frac{\frac{1}{4}-4}{\frac{-3}{2}}

= \frac{\frac{-15}{4}}{\frac{-3}{2}}

= \frac{15}{4}\ * \frac{2}{3}

resposta deu 15 sobre 6 e a do livro é 15 sobre 2. Não soube colocar corretamente as fórmulas mais acredito que dá para entender.

Att,

Virginia
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Sex Abr 26, 2013 20:17

Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sáb Abr 27, 2013 01:17

Obrigada.
danjr5 escreveu:Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)