• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio x² -4/x - 1

Domínio x² -4/x - 1

Mensagempor virginia » Qui Abr 25, 2013 11:21

A minha resposta não está batendo com o livro me ajudem.
Se f(x):\frac{{x}^{2}-4}{x-1}

sendo f(\frac{1}{t}) a minha resposta desse deu \frac{1-4{t}^{2}}{t-{t}^{2}} e a do livro está \frac{1-4t}{t-{t}^{2}}

e f(\frac{1}{2}) a minha resposta deu \frac{15}{6} e a do livro \frac{15}{2}

Gostaria de saber onde eu errei.
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:45

Virgínia,
fica difícil encontrar o erro, pois não postou o desenvolvimento de suas contas!
Vou ajudar-te com a primeira, mas, caso não consiga a outra retorne com as contas, ok?!

Segue,

\\ f(x) = \frac{x^2 - 4}{x - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\left ( \frac{1}{t} \right )^2 - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \div \frac{1 - t}{t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \times \frac{t}{1 - t}

\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{\cancel{t^2}^{t}} \times \frac{\cancel{t}^{1}}{1 - t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t} \times \frac{1}{1 - t} \\\\\\ \boxed{f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t - t^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sex Abr 26, 2013 13:27

Boa tarde, então a resposta do livro está errada não é, pois a minha resposta deu exatamente essa conforme. Já a segunda segue o desenvolvimento abaixo.

f(\frac{1}{2}= \frac{\frac{{1}^{2}}{{2}^{2}-4}}{\frac{1}{2}-2}

= \frac{\frac{1}{4}-4}{\frac{-3}{2}}

= \frac{\frac{-15}{4}}{\frac{-3}{2}}

= \frac{15}{4}\ * \frac{2}{3}

resposta deu 15 sobre 6 e a do livro é 15 sobre 2. Não soube colocar corretamente as fórmulas mais acredito que dá para entender.

Att,

Virginia
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Sex Abr 26, 2013 20:17

Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sáb Abr 27, 2013 01:17

Obrigada.
danjr5 escreveu:Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.