• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio x² -4/x - 1

Domínio x² -4/x - 1

Mensagempor virginia » Qui Abr 25, 2013 11:21

A minha resposta não está batendo com o livro me ajudem.
Se f(x):\frac{{x}^{2}-4}{x-1}

sendo f(\frac{1}{t}) a minha resposta desse deu \frac{1-4{t}^{2}}{t-{t}^{2}} e a do livro está \frac{1-4t}{t-{t}^{2}}

e f(\frac{1}{2}) a minha resposta deu \frac{15}{6} e a do livro \frac{15}{2}

Gostaria de saber onde eu errei.
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:45

Virgínia,
fica difícil encontrar o erro, pois não postou o desenvolvimento de suas contas!
Vou ajudar-te com a primeira, mas, caso não consiga a outra retorne com as contas, ok?!

Segue,

\\ f(x) = \frac{x^2 - 4}{x - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\left ( \frac{1}{t} \right )^2 - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \div \frac{1 - t}{t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \times \frac{t}{1 - t}

\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{\cancel{t^2}^{t}} \times \frac{\cancel{t}^{1}}{1 - t} \\\\\\ f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t} \times \frac{1}{1 - t} \\\\\\ \boxed{f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t - t^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sex Abr 26, 2013 13:27

Boa tarde, então a resposta do livro está errada não é, pois a minha resposta deu exatamente essa conforme. Já a segunda segue o desenvolvimento abaixo.

f(\frac{1}{2}= \frac{\frac{{1}^{2}}{{2}^{2}-4}}{\frac{1}{2}-2}

= \frac{\frac{1}{4}-4}{\frac{-3}{2}}

= \frac{\frac{-15}{4}}{\frac{-3}{2}}

= \frac{15}{4}\ * \frac{2}{3}

resposta deu 15 sobre 6 e a do livro é 15 sobre 2. Não soube colocar corretamente as fórmulas mais acredito que dá para entender.

Att,

Virginia
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor DanielFerreira » Sex Abr 26, 2013 20:17

Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Domínio x² -4/x - 1

Mensagempor virginia » Sáb Abr 27, 2013 01:17

Obrigada.
danjr5 escreveu:Virgínia,
há um equívoco! Sua resposta estaria correta se fosse f(x) = \frac{x^2 - 4}{x - 2}.
Note que o denominador não é o mesmo!

Nessa, a resposta do livro está correta!
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59