• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG...

PG...

Mensagempor 404040 » Seg Out 18, 2010 18:27

Se nº 111 for dividido em três partes, que constituem uma PG de razão 3/4, a menor desssas partes será :
Estou quebrando a cabeça mas não consigo nem começar o cálculo...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: PG...

Mensagempor VtinxD » Sáb Out 23, 2010 03:18

Podemos escrever uma PG desta forma:
({a}_{1};{a}_{2};{a}_{3};....;{a}_{n})=({a}_{1};{a}_{1}.q;{a}_{1}.{q}^{2};....;{a}_{1}.{q}^{n-1}).Sendo {a}_{1} o termo independente , {a}_{n}o n-ésimo termo e "q" a razão da PG.
Como o numero 111 foi dividido em três partes em PG logo podem ser escritos da for utilizada acima ,como são apenas 3 números em PG podemos utilizar os tres primeiros termos da dela.
{a}_{1}+{a}_{2}+{a}_{3}={a}_{1}+{a}_{1}.q+{a}_{1}.{q}^{2}=111.Como q=\frac{3}{4} temos:
{a}_{1}+{a}_{1}.\frac{3}{4}+{a}_{1}.{(\frac{3}{4})}^{2}={a}_{1}\left(1+\frac{3}{4}+{(\frac{3}{4})}^{2} \right)=111.Tirando o mmc:
{a}_{1}\left( \frac{16+12+9}{16}\right)={a}_{1}\left( \frac{37}{16}\right)=111\Rightarrow{a}_{1}=\frac{16.111}{37}={a}_{1}=16.3\Rightarrow{a}_{1}=48
Como a PG é decrecente, graças a sua razão menor do que 1,o menor termo não é {a}_{1} e sim {a}_{3}.
{a}_{3}={q}^{2}.{a}_{1}=\frac{9}{16}.48=3.9\Rightarrow {a}_{3}=27
Espero ter ajudado e me desculpe qualquer erro mas são 3 da manhã :-D .Boa noite
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: PG...

Mensagempor 404040 » Sáb Out 23, 2010 09:21

Agradeço muito a boa vontade, principalmente neste horário, sua explicação foi ótima, simples e prática, valeu...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: