• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG...

PG...

Mensagempor 404040 » Seg Out 18, 2010 18:27

Se nº 111 for dividido em três partes, que constituem uma PG de razão 3/4, a menor desssas partes será :
Estou quebrando a cabeça mas não consigo nem começar o cálculo...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: PG...

Mensagempor VtinxD » Sáb Out 23, 2010 03:18

Podemos escrever uma PG desta forma:
({a}_{1};{a}_{2};{a}_{3};....;{a}_{n})=({a}_{1};{a}_{1}.q;{a}_{1}.{q}^{2};....;{a}_{1}.{q}^{n-1}).Sendo {a}_{1} o termo independente , {a}_{n}o n-ésimo termo e "q" a razão da PG.
Como o numero 111 foi dividido em três partes em PG logo podem ser escritos da for utilizada acima ,como são apenas 3 números em PG podemos utilizar os tres primeiros termos da dela.
{a}_{1}+{a}_{2}+{a}_{3}={a}_{1}+{a}_{1}.q+{a}_{1}.{q}^{2}=111.Como q=\frac{3}{4} temos:
{a}_{1}+{a}_{1}.\frac{3}{4}+{a}_{1}.{(\frac{3}{4})}^{2}={a}_{1}\left(1+\frac{3}{4}+{(\frac{3}{4})}^{2} \right)=111.Tirando o mmc:
{a}_{1}\left( \frac{16+12+9}{16}\right)={a}_{1}\left( \frac{37}{16}\right)=111\Rightarrow{a}_{1}=\frac{16.111}{37}={a}_{1}=16.3\Rightarrow{a}_{1}=48
Como a PG é decrecente, graças a sua razão menor do que 1,o menor termo não é {a}_{1} e sim {a}_{3}.
{a}_{3}={q}^{2}.{a}_{1}=\frac{9}{16}.48=3.9\Rightarrow {a}_{3}=27
Espero ter ajudado e me desculpe qualquer erro mas são 3 da manhã :-D .Boa noite
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: PG...

Mensagempor 404040 » Sáb Out 23, 2010 09:21

Agradeço muito a boa vontade, principalmente neste horário, sua explicação foi ótima, simples e prática, valeu...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}