• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite sen x

Limite sen x

Mensagempor luiz3107 » Sáb Jun 19, 2010 22:23

Como faria para resolver isto? :idea:

\lim_{x\rightarrow0} \frac{x + sen x}{{x}^{2}- sen x}

vlw :-D
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Limite sen x

Mensagempor MarceloFantini » Dom Jun 20, 2010 20:16

Colocando a maior potencia de x em evidência: \lim_{x \to 0} \frac {x + senx}{x^2 - senx} = \lim_{x \to 0} \frac{x(1 + \frac{senx}{x})}{x^2(1 - \frac{senx}{x^2})} = \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}}. Mas sabemos que \lim_{x \to 0} \frac{senx}{x} = 1, logo: \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}} = \lim_{x \to 0} \frac {1 + 1}{0 + 1} = 2
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor Elcioschin » Dom Jun 20, 2010 20:47

Fantini

Acho que vc trocou um sinal do denominador de - para +
Neste caso a respota seria - 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Limite sen x

Mensagempor MarceloFantini » Qui Jun 24, 2010 08:26

É verdade Elcio, desculpe o erro Luiz.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor luiz3107 » Qui Jun 24, 2010 12:39

Jah fiz a prova e deu td certo,
Vlw
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}