• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite sen x

Limite sen x

Mensagempor luiz3107 » Sáb Jun 19, 2010 22:23

Como faria para resolver isto? :idea:

\lim_{x\rightarrow0} \frac{x + sen x}{{x}^{2}- sen x}

vlw :-D
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Limite sen x

Mensagempor MarceloFantini » Dom Jun 20, 2010 20:16

Colocando a maior potencia de x em evidência: \lim_{x \to 0} \frac {x + senx}{x^2 - senx} = \lim_{x \to 0} \frac{x(1 + \frac{senx}{x})}{x^2(1 - \frac{senx}{x^2})} = \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}}. Mas sabemos que \lim_{x \to 0} \frac{senx}{x} = 1, logo: \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}} = \lim_{x \to 0} \frac {1 + 1}{0 + 1} = 2
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor Elcioschin » Dom Jun 20, 2010 20:47

Fantini

Acho que vc trocou um sinal do denominador de - para +
Neste caso a respota seria - 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Limite sen x

Mensagempor MarceloFantini » Qui Jun 24, 2010 08:26

É verdade Elcio, desculpe o erro Luiz.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor luiz3107 » Qui Jun 24, 2010 12:39

Jah fiz a prova e deu td certo,
Vlw
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: