• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite sen x

Limite sen x

Mensagempor luiz3107 » Sáb Jun 19, 2010 22:23

Como faria para resolver isto? :idea:

\lim_{x\rightarrow0} \frac{x + sen x}{{x}^{2}- sen x}

vlw :-D
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Limite sen x

Mensagempor MarceloFantini » Dom Jun 20, 2010 20:16

Colocando a maior potencia de x em evidência: \lim_{x \to 0} \frac {x + senx}{x^2 - senx} = \lim_{x \to 0} \frac{x(1 + \frac{senx}{x})}{x^2(1 - \frac{senx}{x^2})} = \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}}. Mas sabemos que \lim_{x \to 0} \frac{senx}{x} = 1, logo: \lim_{x \to 0} \frac {1 + \frac{senx}{x}}{x + \frac{senx}{x}} = \lim_{x \to 0} \frac {1 + 1}{0 + 1} = 2
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor Elcioschin » Dom Jun 20, 2010 20:47

Fantini

Acho que vc trocou um sinal do denominador de - para +
Neste caso a respota seria - 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Limite sen x

Mensagempor MarceloFantini » Qui Jun 24, 2010 08:26

É verdade Elcio, desculpe o erro Luiz.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite sen x

Mensagempor luiz3107 » Qui Jun 24, 2010 12:39

Jah fiz a prova e deu td certo,
Vlw
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.