• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmos com mudançã de base

logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 10:23

Bom dia, não estou entendo como resolve este exercicio. Já tentei mas não consigo,

{log}_{5} (x + 4) - {log}_{25}(x + 3) = {log}_{5}2

Se Alguem puder me explicar como faço para mudar a base agradeço.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 10:52

Olá cristina. Lembremos das seguintes propriedades de logaritmos:

log a^b = b. log a

log_xy = \frac{log_zy}{log_zx}

log a - log b = log\frac{a}{b}

Agora é só aplicá-las:

log_5\; (x+4) - \frac{log_5\;(x+3)}{log_5\; 25} = log_5\; 2 \; \therefore

log_5 \;(x+4) - \frac{log_5\;(x+3)}{2} = log_5\; 2 \; \therefore

2 log_5\;(x+4) - log_5\; (x+3) = 2 log_5 \;2 \; \therefore

log_5\; (x+4)^2 - log_5\; (x+3) = log_5\; 4 \; \therefore

log_5 \;\frac{(x+4)^2}{x+3} = log_5\; 4 \; \therefore

\frac{(x+4)^2}{x+3} = 4 \; \therefore

x^2 + 8x + 16 = 4x + 12 \; \therefore

x^2 + 4x + 4 = 0  \; \therefore

x = -2 \; (raiz \; dupla)

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:01

Obrigada, eu não estava entendo porque no livro o resultado é x= -3 e x= 9/2

Por isso que não estava compreendendo, e o seu resultado é outro.

Obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 11:37

Esse resultado do livro está errado mesmo. Veja, por exemplo, que -3 não é uma solução. (resultaria em log_{25}\;0).
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:38

Concordo com você, este exercicio já me deixou quase louca....rsrsrsrrsrsrs

Obrigada pela sua dica
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.