• Anúncio Global
    Respostas
    Exibições
    Última mensagem

logaritmos com mudançã de base

logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 10:23

Bom dia, não estou entendo como resolve este exercicio. Já tentei mas não consigo,

{log}_{5} (x + 4) - {log}_{25}(x + 3) = {log}_{5}2

Se Alguem puder me explicar como faço para mudar a base agradeço.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 10:52

Olá cristina. Lembremos das seguintes propriedades de logaritmos:

log a^b = b. log a

log_xy = \frac{log_zy}{log_zx}

log a - log b = log\frac{a}{b}

Agora é só aplicá-las:

log_5\; (x+4) - \frac{log_5\;(x+3)}{log_5\; 25} = log_5\; 2 \; \therefore

log_5 \;(x+4) - \frac{log_5\;(x+3)}{2} = log_5\; 2 \; \therefore

2 log_5\;(x+4) - log_5\; (x+3) = 2 log_5 \;2 \; \therefore

log_5\; (x+4)^2 - log_5\; (x+3) = log_5\; 4 \; \therefore

log_5 \;\frac{(x+4)^2}{x+3} = log_5\; 4 \; \therefore

\frac{(x+4)^2}{x+3} = 4 \; \therefore

x^2 + 8x + 16 = 4x + 12 \; \therefore

x^2 + 4x + 4 = 0  \; \therefore

x = -2 \; (raiz \; dupla)

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:01

Obrigada, eu não estava entendo porque no livro o resultado é x= -3 e x= 9/2

Por isso que não estava compreendendo, e o seu resultado é outro.

Obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: logaritmos com mudançã de base

Mensagempor Douglasm » Ter Jun 08, 2010 11:37

Esse resultado do livro está errado mesmo. Veja, por exemplo, que -3 não é uma solução. (resultaria em log_{25}\;0).
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: logaritmos com mudançã de base

Mensagempor cristina » Ter Jun 08, 2010 11:38

Concordo com você, este exercicio já me deixou quase louca....rsrsrsrrsrsrs

Obrigada pela sua dica
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59