• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pequeno problema de Função

Pequeno problema de Função

Mensagempor Luanna » Qua Mar 17, 2010 21:29

Um cabeleireiro cobra R$ 12,00 pelo corte para clientes com hora marcada e R$ 10,00 para clientes sem hora marcada. Ele atende por dia um número fixo de 6 clientes com hora marcada e um número variável x de clientes sem hora marcada .

a) escreva a fórmula matemática que fornece a quantia Q arrecadada por dia em função do numero x .

b) Qual foi a quantia arrecada num dia em que foram atendidos 16 clientes ?

c) Qual foi o numero de clientes atendidos num dia em que foram arrecadados R$ 212,00 ?

d) Qual é a expressão que indica o numero C de clientes atendidos por dia em função de x ?
Luanna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Nov 10, 2009 15:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Pequeno problema de Função

Mensagempor Elcioschin » Qua Mar 17, 2010 22:07

a) Q = 12,00*6 + 10,00*x

b) Faça x = 16 acima

c) Faça Q = 212,00 acima

d) C = (x + 6)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Pequeno problema de Função

Mensagempor valeriamsa » Sex Mai 27, 2011 00:23

Galerinha, eu não entendi a questão A...
Ela não se refere apenas a quantidade arrecada em função de x? *-)
A formula não seria então Q= 10,00 . x?
valeriamsa
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 26, 2011 23:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Pequeno problema de Função

Mensagempor demolot » Sex Mai 27, 2011 08:31

Nao visto que Q(x)= é quantidade de dinheiro arrecadado a funçao tem obrigatoriamente que ter o 12*6 +10x
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando

Re: Pequeno problema de Função

Mensagempor Claudin » Sex Mai 27, 2011 09:36

a) q(x)= 12.(6) + 10x horamarcada --> R$12,00 . 6 clientes fixos/ R$10,00 . X (clientes variáveis por dia).

b) Sendo 6 clientes com hora marcada, e 10 com hora não marcada totalizando 16. q(16)= 12.(6) + 10(16) = 72 + 160 = 232

c) q(x)= 12.(6) + 10x \Rightarrow 212 = 72 + 10x \Rightarrow 140 = 10x \Rightarrow x = 14 Seriam 14 clientes, quando o faturamento for de R$ 212,00.

d) C = x + 6 Seriam 6 clientes fixos por dia, mais o valor variável dos que não marcam hora.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Pequeno problema de Função

Mensagempor valeriamsa » Sex Mai 27, 2011 19:19

Valeu pessoal!!! Muito obrigada!
valeriamsa
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 26, 2011 23:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

função

Mensagempor valeriamsa » Dom Mai 29, 2011 23:11

Não consigo postar uma duvida separada de uma questão ja existente... :-D
Dada a função f :R-R defenida por f(x)= ax + b com a, b E R calcular a e b sabendo que f(2)=3 e f(3)=9. Determine a função.
Não tenho ideia de como fazer isso visto que a formula não me da o valor nem de a e nem de b... *-)
valeriamsa
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 26, 2011 23:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.