• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites, quando podem resultar em "Infinito"?

Limites, quando podem resultar em "Infinito"?

Mensagempor rafa_0910 » Dom Nov 02, 2014 14:17

Bom Dia,
Gostaria de saber se sempre quando o divisor resulta em zero e o dividendo em "K" o limite de f(x) será infinito?
Nesse caso: \lim_{7}\left(\sqrt[]{x+7} -3\right)/\left(7-x \right) , Qual seria a resposta correta?
Grato por quem se interessar responder!
rafa_0910
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Nov 02, 2014 14:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites, quando podem resultar em "Infinito"?

Mensagempor Russman » Dom Nov 02, 2014 21:22

Sim. Os casos que devem ser melhor estudados são os casos de 0/0 ou infinito/infinito que são indeterminações. Isto é, são números reais um pouco mais difíceis de serem calculados.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limites, quando podem resultar em "Infinito"?

Mensagempor rafa_0910 » Dom Nov 02, 2014 23:40

Nesse questão acima, meu professor afirmou q a resposta correta seria = a não existe, e para provar fez lim quan x->7 pela direita q resutou em +infinito e x->7 pela esquerda, q resultou em -infinito. Está correta essa afirmação? E caso esteja errado, como provar?
Grato desde já!
rafa_0910
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Nov 02, 2014 14:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites, quando podem resultar em "Infinito"?

Mensagempor Russman » Seg Nov 03, 2014 02:23

De fato. Observe o gráfico dessa função e note que os limites laterias são diferentes em x=7. Portanto, o limite não existe.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)