• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivada da função

[Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 08:25

Pessoal como resolver essa:

Encontre a derivada da função f(x)=3cos^{2}(e^{-x})

Eu até achava fácil, porém ao tentar fazer com a formula U^{p}\rightarrow PU^{p-1}.U^{'} o resultado que eu chego é bem diferente da resposta que tem na apostila(resposta em anexo). Se possível deixar bem detalhado o passo a passo para que eu possa entender onde que estou errando, obrigado ^^

Resposta: f^{'}(x)=-6e^{-x}cos(e^{-x})sen(e^{-x})
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Sáb Nov 01, 2014 12:06

você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 17:48

young_jedi escreveu:você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})



Entendo, mas pq nesse caso em especifico eu preciso usar duas vezes ?
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 09:28

é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Dom Nov 02, 2014 10:14

young_jedi escreveu:é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})


Muito obrigado amigo, agora entendi ^^. Só uma coisa, então o gabarito está errado não é? pois lá tem o 6 como -6 no final. Obrigado mais uma vez ^^
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 10:29

É verdade, mas o sinal de menos acho que é um erro de gabarito mesmo.

Valeu !
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.