• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivada da função

[Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 08:25

Pessoal como resolver essa:

Encontre a derivada da função f(x)=3cos^{2}(e^{-x})

Eu até achava fácil, porém ao tentar fazer com a formula U^{p}\rightarrow PU^{p-1}.U^{'} o resultado que eu chego é bem diferente da resposta que tem na apostila(resposta em anexo). Se possível deixar bem detalhado o passo a passo para que eu possa entender onde que estou errando, obrigado ^^

Resposta: f^{'}(x)=-6e^{-x}cos(e^{-x})sen(e^{-x})
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Sáb Nov 01, 2014 12:06

você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 17:48

young_jedi escreveu:você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})



Entendo, mas pq nesse caso em especifico eu preciso usar duas vezes ?
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 09:28

é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Dom Nov 02, 2014 10:14

young_jedi escreveu:é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})


Muito obrigado amigo, agora entendi ^^. Só uma coisa, então o gabarito está errado não é? pois lá tem o 6 como -6 no final. Obrigado mais uma vez ^^
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 10:29

É verdade, mas o sinal de menos acho que é um erro de gabarito mesmo.

Valeu !
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.