por neoreload » Sáb Nov 01, 2014 08:25
Pessoal como resolver essa:
Encontre a derivada da função

Eu até achava fácil, porém ao tentar fazer com a formula

o resultado que eu chego é bem diferente da resposta que tem na apostila(resposta em anexo). Se possível deixar bem detalhado o passo a passo para que eu possa entender onde que estou errando, obrigado ^^
Resposta:

-
neoreload
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Sáb Ago 09, 2014 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Sáb Nov 01, 2014 12:06
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por neoreload » Sáb Nov 01, 2014 17:48
Entendo, mas pq nesse caso em especifico eu preciso usar duas vezes ?
-
neoreload
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Sáb Ago 09, 2014 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Dom Nov 02, 2014 09:28
é porque você tem a função

dentro da função

e a função

dentro da função

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por neoreload » Dom Nov 02, 2014 10:14
young_jedi escreveu:é porque você tem a função

dentro da função

e a função

dentro da função

Muito obrigado amigo, agora entendi ^^. Só uma coisa, então o gabarito está errado não é? pois lá tem o 6 como -6 no final. Obrigado mais uma vez ^^
-
neoreload
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Sáb Ago 09, 2014 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por young_jedi » Dom Nov 02, 2014 10:29
É verdade, mas o sinal de menos acho que é um erro de gabarito mesmo.
Valeu !
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] - Derivada de função partida (e indeterminação)
por AlexanderCanust » Qui Mai 28, 2015 12:10
- 0 Respostas
- 1322 Exibições
- Última mensagem por AlexanderCanust

Qui Mai 28, 2015 12:10
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Derivadas parciais
por -civil- » Qui Set 29, 2011 15:28
- 1 Respostas
- 1987 Exibições
- Última mensagem por LuizAquino

Sex Set 30, 2011 17:57
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Questão simples de derivada.
por Gustavo195 » Ter Mai 14, 2013 17:52
- 0 Respostas
- 1529 Exibições
- Última mensagem por Gustavo195

Ter Mai 14, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Derivadas parciais e ponto crítico
por Mell » Dom Jul 07, 2013 10:24
- 1 Respostas
- 1815 Exibições
- Última mensagem por hygorvv

Seg Jul 08, 2013 07:11
Cálculo: Limites, Derivadas e Integrais
-
- [derivadas ]essa derivada já ta esquentando minha cabeça.
por vinicastro » Sáb Dez 15, 2012 22:42
- 5 Respostas
- 2786 Exibições
- Última mensagem por vinicastro

Dom Dez 16, 2012 15:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.