por Ovelha » Ter Abr 15, 2014 16:09
Qual o coeficiente de

no desenvolvimento de

-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Ter Abr 15, 2014 23:35
Deixe

em evidencia , teremos
![(1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20 (1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20](/latexrender/pictures/0ad7338f8254c716abb315c1a063622d.png)
.Pelo teorema binomial ,
![1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k 1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k](/latexrender/pictures/6b190677aa82f28ec474211533c54f62.png)
.
O termo

é oriundo da 4 parcela

. Basta desenvolver para encontrar o coefc.
Observe que nas parcelas ,

, o grau de x será sempre menor que

quando

(afinal de contas

) e maior que

quando

(afinal de contas

) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 08:24
valeu pela ajuda, tô novo no assunto vou tentar desenvolver e se tiver problemas vou pedir sua ajuda, tudo bem?
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 10:19
Tranquilo , qualquer dúvida só dizer .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 13:16
Olá, tudo bem. Comecei a fazer agora não estou conseguindo passar da combinação, estou tendo problemas no desenvolvimento,não consigo visualizar como desenvolver.
Desculpe pelo aluguel
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 15:23
OK . :
Temos

e

. O único termo que nos interessa é

, pois

. Então o coefc. é

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 15:05
Valeu Santhiago, contudo eu estava olhando e descobri que as possiveis respostas da questão colocads como opção foram:
a) 0
b)3000
c)1210
d)3420
e)4000
Continuo contando com sua ajuda
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 17:42
Perdão ! Na correria acabei digitando errado . Vamos lá , sabemos que o termo da forma

vem da expressão

. Ao desenvolvermos

precisaremos de

. Pois , produto de números de mesma base conserva a base e soma os expoentes . Logo o coef. será

. Agora vamos determinar

.
Vamos utilizar o teorema binomial (será + rápido !!!)

. Precisamos apenas de

. Assim , o nosso

é 3 , logo a resposta será

. Por favor , agora check a resposta .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 21:02
Muito obrigado, se você tiver um bom material de binômio estilo ita com questões resolvidas e comentadas. Aceito receber o link ou pdf para estudo,
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 22:07
De nada . Conheço um site que pode ser útil para vc :
http://www.rumoaoita.com/site/
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 13:48
Valeu pela dica. Agora desejo sabaer uma duvida. Ao escrever "Ao desenvolvermos

" na resposta os termos dentro doparenteses é elevado a 2 ou 3.
Obrigado
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Sáb Abr 19, 2014 14:00
OMG , pensei certo e escrevi errado de novo .
O certo é ao desenvolvermos

... . As potências de (x^2) serão sempre 0,1,2,3 . Todos naturais menores que 3 , Ou ainda , As potências de x serão 0,2,4,6 .
Lembre-se que ao desenvolver

cada parcela será da forma

com

. Portanto , as potências de

são naturais variando de zero até n .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 14:09
Muito obrigADOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
DEUS ABENÇOE
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Binômio de Newton
por Giordane Junior » Sex Dez 03, 2010 00:46
- 0 Respostas
- 7899 Exibições
- Última mensagem por Giordane Junior

Sex Dez 03, 2010 00:46
Binômio de Newton
-
- (PUC-PR)BINOMIO DE NEWTON
por natanskt » Seg Dez 06, 2010 10:54
- 1 Respostas
- 7154 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 11:54
Binômio de Newton
-
- Binômio de Newton
por natanskt » Seg Dez 06, 2010 12:07
- 1 Respostas
- 8548 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 14:07
Binômio de Newton
-
- Binomio de Newton.
por 380625 » Sex Mar 11, 2011 12:57
- 1 Respostas
- 2837 Exibições
- Última mensagem por MarceloFantini

Sex Mar 11, 2011 16:20
Binômio de Newton
-
- Binomio de newton
por Fabricio dalla » Sex Abr 01, 2011 01:13
- 8 Respostas
- 8008 Exibições
- Última mensagem por LuizAquino

Sáb Jul 23, 2011 19:12
Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.