por Ovelha » Ter Abr 15, 2014 16:09
Qual o coeficiente de

no desenvolvimento de

-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Ter Abr 15, 2014 23:35
Deixe

em evidencia , teremos
![(1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20 (1 + x^5 +x^7)^{20} = (1 +[x^5(1 +x^2)])^20](/latexrender/pictures/0ad7338f8254c716abb315c1a063622d.png)
.Pelo teorema binomial ,
![1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k 1 +[x^5(1 +x^2)])^20= \sum_{k=0}^{20} \binom{20}{k} [x^5(1+x^2)]^k = \sum_{k=0}^{20} \binom{20}{k} x^{5k}(1+x^2)^k = 1 + \binom{20}{1}x^5(1+x^2 ) + \binom{20}{2}x^{10}(1+x^2)^2 + \binom{20}{3}x^{15}(1 +x^2)^3 + \sum_{k=4}^{20} \binom{20}{k} [x^5(1+x^2)]^k](/latexrender/pictures/6b190677aa82f28ec474211533c54f62.png)
.
O termo

é oriundo da 4 parcela

. Basta desenvolver para encontrar o coefc.
Observe que nas parcelas ,

, o grau de x será sempre menor que

quando

(afinal de contas

) e maior que

quando

(afinal de contas

) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 08:24
valeu pela ajuda, tô novo no assunto vou tentar desenvolver e se tiver problemas vou pedir sua ajuda, tudo bem?
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 10:19
Tranquilo , qualquer dúvida só dizer .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Abr 16, 2014 13:16
Olá, tudo bem. Comecei a fazer agora não estou conseguindo passar da combinação, estou tendo problemas no desenvolvimento,não consigo visualizar como desenvolver.
Desculpe pelo aluguel
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Abr 16, 2014 15:23
OK . :
Temos

e

. O único termo que nos interessa é

, pois

. Então o coefc. é

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 15:05
Valeu Santhiago, contudo eu estava olhando e descobri que as possiveis respostas da questão colocads como opção foram:
a) 0
b)3000
c)1210
d)3420
e)4000
Continuo contando com sua ajuda
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 17:42
Perdão ! Na correria acabei digitando errado . Vamos lá , sabemos que o termo da forma

vem da expressão

. Ao desenvolvermos

precisaremos de

. Pois , produto de números de mesma base conserva a base e soma os expoentes . Logo o coef. será

. Agora vamos determinar

.
Vamos utilizar o teorema binomial (será + rápido !!!)

. Precisamos apenas de

. Assim , o nosso

é 3 , logo a resposta será

. Por favor , agora check a resposta .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qui Abr 17, 2014 21:02
Muito obrigado, se você tiver um bom material de binômio estilo ita com questões resolvidas e comentadas. Aceito receber o link ou pdf para estudo,
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qui Abr 17, 2014 22:07
De nada . Conheço um site que pode ser útil para vc :
http://www.rumoaoita.com/site/
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 13:48
Valeu pela dica. Agora desejo sabaer uma duvida. Ao escrever "Ao desenvolvermos

" na resposta os termos dentro doparenteses é elevado a 2 ou 3.
Obrigado
Deus abençoe
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Sáb Abr 19, 2014 14:00
OMG , pensei certo e escrevi errado de novo .
O certo é ao desenvolvermos

... . As potências de (x^2) serão sempre 0,1,2,3 . Todos naturais menores que 3 , Ou ainda , As potências de x serão 0,2,4,6 .
Lembre-se que ao desenvolver

cada parcela será da forma

com

. Portanto , as potências de

são naturais variando de zero até n .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Sáb Abr 19, 2014 14:09
Muito obrigADOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
DEUS ABENÇOE
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Binômio de Newton
por Giordane Junior » Sex Dez 03, 2010 00:46
- 0 Respostas
- 7899 Exibições
- Última mensagem por Giordane Junior

Sex Dez 03, 2010 00:46
Binômio de Newton
-
- (PUC-PR)BINOMIO DE NEWTON
por natanskt » Seg Dez 06, 2010 10:54
- 1 Respostas
- 7154 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 11:54
Binômio de Newton
-
- Binômio de Newton
por natanskt » Seg Dez 06, 2010 12:07
- 1 Respostas
- 8548 Exibições
- Última mensagem por Elcioschin

Seg Dez 06, 2010 14:07
Binômio de Newton
-
- Binomio de Newton.
por 380625 » Sex Mar 11, 2011 12:57
- 1 Respostas
- 2837 Exibições
- Última mensagem por MarceloFantini

Sex Mar 11, 2011 16:20
Binômio de Newton
-
- Binomio de newton
por Fabricio dalla » Sex Abr 01, 2011 01:13
- 8 Respostas
- 8008 Exibições
- Última mensagem por LuizAquino

Sáb Jul 23, 2011 19:12
Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.