• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Extremos de funções e derivadas

Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 12:20

Galera, eu estava tentando esboçar o gráfico da função g(x)= x\sqrt[]{8-x^2}. E tuda estava dando certo.

Derivei essa função e achei os pontos críticos, que são x=2 ou x=-2 e também x=2\sqrt[]{2} ou x=-2\sqrt[]{2}

Feito isso, eu derivei novamente essa função (no caso a segunda derivada) para verificar se os pontos críticos são pontos de máximo ou ponto de mínimo. E pelo que calculei, o x=2 é o ponto de máximo (segunda derivada é negativa) e também côncavo para baixo, e x=-2 é o ponto de mínimo (segunda derivada é positiva) e também côncavo para cima. Mas para x=2\sqrt[]{2} e x=-2\sqrt[]{2} a segunda derivada não existe (joguei tudo pela calculadora pois é muito trabalho fazer tudo a mão), então não podemos afirmar nada se esses pontos são de máximo ou de mínimo. Mas eu sei que o x=0 é o ponto de inflexão, pois a segunda derivada é nula para esse ponto.

OBS: deu muito trabalho para derivar essa função, pois é uma função polinominal junto com a raíz. Isso vira um jogo de regra da cadeia.

Feito isso eu esbocei o gráfico e ficou assim:


Mínimo local em x=-2 máximo local em x=2

Porém, o gabarito deu também que tem máximos e mínimos absolutos que é x=2 e x=-2 respectivamente, e máximo local em x=-2\sqrt[]{2} e mínimo local em x=2\sqrt[]{2}, além de x=2 e x=-2 que achei. Eu não entendi o motivo da existência de extremos absolutos, transferi tudo para o software gráfico e esse gráfico ficou muito parecido com o meu, e o gabarito está dizendo que faltou alguma coisa. Alguém poderia me ajudar a verificar esse misterioso gráfico? Eu Agradeço se alguém puder :-D

Abraço.
Anexos
IMG_0224.JPG
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor e8group » Dom Nov 17, 2013 15:39

A função g é contínua no intervalo fechado [-2\sqrt{2},2\sqrt{2}] = I (Este é o maior intervalo para o qual a função está definida) ,então pelo Teorema de Weierstrass está função possui um valor máximo absoluto e mínimo absoluto em I .

É bem provável que esta função assuma valor máximo/mínimo absoluto nos pontos do extremo do intervalo ou nos pontos críticos encontrados.

Basta comparar a imagens destes pontos (críticos e dos extremos do intervalo) por g ,verificando quais são maiores ,menores .

OBS .: Observe que a função não está definida para pontos fora do intervalo I , pois, pontos tomados em I^{C} são levados em imagem complexas por g e estamos trabalhando com funções cujo domínio e contra-domínio são subconjuntos de \mathbb{R} .

Portanto deve corrigir o esboço do gráfico .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 16:35

Ahhh é verdade! Nem tinha percebido que o domínio dessa função também varia de -2\sqrt[]{2} para 2\sqrt[]{2}. Então quer dizer que os pontos críticos -2\sqrt[]{2} e 2\sqrt[]{2} também são extremos dos intervalos? Agora clareou um pouco, pois já que o intervalo do domínio é dessa forma, então realmente os extremos absolutos são x=-2 e x=2. Agora quero entender: Já que o intervalo do domínio é assim, eu ainda não estou enxergando de onde veio os pontos de máximo e mínimo local em -2\sqrt[]{2} e 2\sqrt[]{2} respectivamente, é o que o gabarito mostrou. A imagem desses pontos é zero, e dos pontos críticos 2 e -2 são: 4 e -4 respectivamente. Mas valeu pelo detalhe.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor e8group » Dom Nov 17, 2013 18:54

Não é possível determinar intervalos abertos \subset I contendo um dos extremos do intervalo I ,então como tais pontos são considerados extremos locais ?

Observe que se - 2\sqrt{2} fosse ponto de máximo local de g então existiria uma vizinhança V \subset I de - 2\sqrt{2} (i.e, um intervalo aberto (a,b) \subset I contendo - 2\sqrt{2} ) tal que
f(x) \leq  f(-2\sqrt{2})  , \forall x \in V , mas acontece que não existe esta vizinhança V de - 2\sqrt{2} .Pelo mesmo argumento ,pode-se concluir que 2\sqrt{2} não é mínimo local .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 19:16

Pois é... Eu estava suspeitando isso. Puxa, os extremos do domínio é só para limitar uma função e ponto não tem como esses extremos serem extremos locais. Então para mim, o gabarito só pode estar errado. Na verdade então só tem x=2 e x=-2 como extremos locais, assim como absolutos, pois justamente o domínio varia de -2\sqrt[]{2} até 2\sqrt[]{2} num intervalo fechado.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?