• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de soluções da equação

Soma de soluções da equação

Mensagempor Pri Ferreira » Qui Nov 03, 2011 22:41

Tentei utilizar algumas identidades trigonómetricas, caí numa equação do 2º grau, mas isso não me ajudou, podem me dar outro caminho, para obter a resposta?? Obrigada.
No intervalo [0° , 360°], a soma das soluções da equação cosx. sen²x + sen²x = (cosx + 1) / 4 é:
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma de soluções da equação

Mensagempor Aliocha Karamazov » Qui Nov 03, 2011 23:49

Coloque sen^2(x) em evidência:

cos(x)sen^2(x) + sen^2(x) = \frac{cos(x) + 1)}{4} \Rightarrow sen^2(x)[cos(x)+1]= \frac{cos(x) + 1)}{4}

Já sabe o que fazer agora...
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Soma de soluções da equação

Mensagempor fernandocez » Sex Mai 03, 2013 18:00

Aproveitando a questão.

Encontrei a solução em um site mas tá muito resumido:

sen x = + - \sqrt[]{\frac{1}{4}} = + - \frac{1}{2}} ----- s ={30°,150°,210°,330°}
ou
cos x + 1 = 0 = cos x = - 1 ------ s = {180°}

Estou com dúvida como chegou em cos x + 1 = 0 ??
já tentei desenvolver a expressão de várias maneiras e não chego em cos x + 1 = 0
Agradeço quem puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.