• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de soluções da equação

Soma de soluções da equação

Mensagempor Pri Ferreira » Qui Nov 03, 2011 22:41

Tentei utilizar algumas identidades trigonómetricas, caí numa equação do 2º grau, mas isso não me ajudou, podem me dar outro caminho, para obter a resposta?? Obrigada.
No intervalo [0° , 360°], a soma das soluções da equação cosx. sen²x + sen²x = (cosx + 1) / 4 é:
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma de soluções da equação

Mensagempor Aliocha Karamazov » Qui Nov 03, 2011 23:49

Coloque sen^2(x) em evidência:

cos(x)sen^2(x) + sen^2(x) = \frac{cos(x) + 1)}{4} \Rightarrow sen^2(x)[cos(x)+1]= \frac{cos(x) + 1)}{4}

Já sabe o que fazer agora...
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Soma de soluções da equação

Mensagempor fernandocez » Sex Mai 03, 2013 18:00

Aproveitando a questão.

Encontrei a solução em um site mas tá muito resumido:

sen x = + - \sqrt[]{\frac{1}{4}} = + - \frac{1}{2}} ----- s ={30°,150°,210°,330°}
ou
cos x + 1 = 0 = cos x = - 1 ------ s = {180°}

Estou com dúvida como chegou em cos x + 1 = 0 ??
já tentei desenvolver a expressão de várias maneiras e não chego em cos x + 1 = 0
Agradeço quem puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.