por Matheus Lacombe O » Sáb Mar 30, 2013 18:25
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Russman » Sáb Mar 30, 2013 19:24
Tem que dividir o 4 por 2. Não esquece que tem o

ali na frente da função.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Matheus Lacombe O » Sáb Mar 30, 2013 20:19
Bá, não entendi , não.. Olha: o "x" não é igual a 2 e o "a" não é igual a "x" e a fórmula não é:

substituindo na fórmula, não dá:

??
Pelo amor de Deus, socorro! Preciso entender isso. É muito importante!
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Russman » Dom Mar 31, 2013 12:33
O

é a variável de integração!! Assim, você não pode tomar um valor específico para

. Note que

. Portanto, você tem de tomar

e não

. A ordem que eles aparecem no denominador não importa:

Assim, você tem de tomar em

, em comparação com

,

pois

. Entende onde você está se confundindo?
Lembre-se que a ordem das parcelas não altera a soma:

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Matheus Lacombe O » Dom Mar 31, 2013 21:15
-Tá, legal. Eu consegui resolver pelo que você me explicou. Mas sem querer abusar..
-Eu pensei o seguinte: E se a minha integral não estivesse "prontinha" para aplicar na fórmula? E se ao invés de

eu tivesse

, por exemplo? Você disse que eu não posso comparar o "

" com um valor específico, 4(quatro) no caso, então aqui eu teria que comparar

com

e

com

?
-Seria isso?
-Mais uma vez, obrigado pela atenção e dedicação.
Att. Matheus L. Oliveira
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por Russman » Dom Mar 31, 2013 21:19
Não. A sua fórmula aplica-se somente a integral

. No caso de

teríamos de estudar e desenvolver outra relação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- fórmula
por Ismafa » Ter Fev 17, 2009 01:29
- 2 Respostas
- 3097 Exibições
- Última mensagem por Ismafa

Qua Fev 25, 2009 09:57
Sistemas de Equações
-
- Fórmula de PMT
por Leonardonc » Seg Ago 27, 2012 09:27
- 0 Respostas
- 2156 Exibições
- Última mensagem por Leonardonc

Seg Ago 27, 2012 09:27
Matemática Financeira
-
- demonstração de fórmula
por Troe » Ter Out 20, 2009 18:07
- 0 Respostas
- 2103 Exibições
- Última mensagem por Troe

Ter Out 20, 2009 18:07
Trigonometria
-
- Qual é a fórmula?
por thales7l » Qua Nov 04, 2009 18:02
- 1 Respostas
- 2081 Exibições
- Última mensagem por Neperiano

Dom Set 18, 2011 13:53
Estatística
-
- duvida da formula
por pavaroti » Sáb Jan 02, 2010 05:07
- 7 Respostas
- 5583 Exibições
- Última mensagem por Molina

Sáb Jan 02, 2010 22:40
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.