por Adriana Baldussi » Ter Set 29, 2009 16:04
Sempre tive essa dúvida quanto a funções quadráticas: quando o resultado do número da raiz for quebrado,a conta continua?O que devo fazer?
EX: x=- b +- ?? x=-(-4)+- ?20
o a vale 1
Editado pela última vez por
Adriana Baldussi em Ter Set 29, 2009 16:14, em um total de 1 vez.
-
Adriana Baldussi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Set 29, 2009 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Dan » Ter Set 29, 2009 16:09
Só pra saber... o "a" vale quanto? Porque ele tem que aparecer no final...
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Adriana Baldussi » Ter Set 29, 2009 16:24
o a vale 1
-
Adriana Baldussi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Set 29, 2009 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Dan » Ter Set 29, 2009 16:35
Ok, então só tem x². Você ainda não dividiu o "a" e vai dividir depois de tirar a raíz de 20, certo? Porque aí do jeito que vc mostrou deu a impressão que o 2a foi cortado antes, e ele tem que estar presente no final.
Foi isso que você fez?
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Adriana Baldussi » Ter Set 29, 2009 17:08
Exato,só vou dividir depois que tirar da raiz,e é bem essa a questao,o resultado dá raiz dá numero quebrado,e não sei o que fazer então.
-
Adriana Baldussi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Set 29, 2009 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Dan » Ter Set 29, 2009 17:13
Então, se vc fez tudo certinho, pode deixar o resultado como
![\frac{4+\sqrt[]{20}}{2a} \frac{4+\sqrt[]{20}}{2a}](/latexrender/pictures/0c28e576aeaf5d975805d7858ee3b386.png)
e
![\frac{4-\sqrt[]{20}}{2a} \frac{4-\sqrt[]{20}}{2a}](/latexrender/pictures/ab3ef31827480efac2ee55a5ebb9319e.png)
.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Adriana Baldussi » Ter Set 29, 2009 17:16
E quando eu dividir o resultado a raiz irá sair não é?
-
Adriana Baldussi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Set 29, 2009 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Dan » Ter Set 29, 2009 17:19
Olha, se vc quiser pode extrair a raíz de 20 e fazer todos os cálculos até o fim. Mas como vai dar número quebrado, pode deixar só assim mesmo, com raíz e tudo. Não tem como cortar ou dividir nada se vc não mexer na raíz.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções quadraticas pf me ajudem
por Thalia Cristina » Qui Nov 05, 2015 21:03
- 1 Respostas
- 3184 Exibições
- Última mensagem por nakagumahissao

Sex Nov 06, 2015 10:24
Funções
-
- Funções quadraticas pf me ajudem
por Thalia Cristina » Qui Nov 05, 2015 19:39
- 1 Respostas
- 2079 Exibições
- Última mensagem por nakagumahissao

Sex Nov 06, 2015 10:38
Funções
-
- Funções Quadráticas aplicado a Agronomia
por ronald_lima » Qui Jun 16, 2016 22:12
- 0 Respostas
- 2478 Exibições
- Última mensagem por ronald_lima

Qui Jun 16, 2016 22:12
Funções
-
- (funções quadráticas e exponenciais e suas aplicações)
por filipe2008 » Qua Out 31, 2012 08:38
- 1 Respostas
- 2301 Exibições
- Última mensagem por young_jedi

Qua Out 31, 2012 12:20
Funções
-
- [Problemas de Inequaçoes Quadráticas]
por R0nny » Dom Abr 28, 2013 11:05
- 2 Respostas
- 1848 Exibições
- Última mensagem por R0nny

Qua Mai 01, 2013 14:46
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.