• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções Quadráticas

Funções Quadráticas

Mensagempor Adriana Baldussi » Ter Set 29, 2009 16:04

Sempre tive essa dúvida quanto a funções quadráticas: quando o resultado do número da raiz for quebrado,a conta continua?O que devo fazer?
EX: x=- b +- ?? x=-(-4)+- ?20



o a vale 1
Editado pela última vez por Adriana Baldussi em Ter Set 29, 2009 16:14, em um total de 1 vez.
Adriana Baldussi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 29, 2009 15:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Dan » Ter Set 29, 2009 16:09

Só pra saber... o "a" vale quanto? Porque ele tem que aparecer no final...
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Adriana Baldussi » Ter Set 29, 2009 16:24

o a vale 1
Adriana Baldussi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 29, 2009 15:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Dan » Ter Set 29, 2009 16:35

Ok, então só tem x². Você ainda não dividiu o "a" e vai dividir depois de tirar a raíz de 20, certo? Porque aí do jeito que vc mostrou deu a impressão que o 2a foi cortado antes, e ele tem que estar presente no final.

Foi isso que você fez?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Adriana Baldussi » Ter Set 29, 2009 17:08

Exato,só vou dividir depois que tirar da raiz,e é bem essa a questao,o resultado dá raiz dá numero quebrado,e não sei o que fazer então.
Adriana Baldussi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 29, 2009 15:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Dan » Ter Set 29, 2009 17:13

Então, se vc fez tudo certinho, pode deixar o resultado como \frac{4+\sqrt[]{20}}{2a} e \frac{4-\sqrt[]{20}}{2a}.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Adriana Baldussi » Ter Set 29, 2009 17:16

E quando eu dividir o resultado a raiz irá sair não é?
Adriana Baldussi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 29, 2009 15:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Funções Quadráticas

Mensagempor Dan » Ter Set 29, 2009 17:19

Olha, se vc quiser pode extrair a raíz de 20 e fazer todos os cálculos até o fim. Mas como vai dar número quebrado, pode deixar só assim mesmo, com raíz e tudo. Não tem como cortar ou dividir nada se vc não mexer na raíz.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}