• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Agrupamento.

[Fatoração] Agrupamento.

Mensagempor replay » Qui Dez 13, 2012 17:05

Fatorando x^2+2y^2+3xy+x+y obtemos:

Eu fiz assim:

Separei em grupos:

x^2+3xy+2y^2+y
x(x+3y)+y(2y+1)

Sinto que errei em alguma coisa, não acho a resposta no gabarito:

a)(2x-y)(x-2y+3)
b)(x+y)(x+2y+1)
c)(2x+y)(x+y-3)
d)x+y(2xy)
e)2x+y(x+2y+1)
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Agrupamento.

Mensagempor DanielFerreira » Qui Dez 13, 2012 21:36

Olá replay,
boa noite!
Essa fatoração não é tão simples!
A expressão tem 5 termos e você fatorou com apenas 4...

Fiz assim:

\\ x^2 + 2y^2 + 3xy + x + y = \\\\ x^2 + (y^2 + y^2) + (2xy + xy) + x + y = \\\\ x^2 + y^2 + 2xy + y^2 + xy + x + y = \\\\ (x^2 + 2xy + y^2) + y^2 + xy + x + y = \\\\ (x + y)^2 + y(y + x) + 1(x + y) = \\\\ (x + y)^2 + y(x + y) + 1(x + y) = \\\\ (x + y)\left[ (x + y) + y + 1 \right] = \\\\ (x + y)(x + y + y + 1) = \\\\ \boxed{(x + y)(x + 2y + 1)}

Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Fatoração] Agrupamento.

Mensagempor replay » Qua Dez 19, 2012 16:08

danjr5 escreveu:

(y^2 + y^2)



Esse trecho:

(y^2 + y^2) = 2y^2

Seria isso ?
Queria saber oque fez nesse trecho, foi uma espécie de fatoração ?
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Agrupamento.

Mensagempor DanielFerreira » Sex Dez 28, 2012 22:09

Desculpe a demora!
Quanto ao trecho mencionado, é isso mesmo!

Esse tipo de fatoração exige prática no assunto. Continue resolvendo muitos exercícios.

Até.

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.