por SCHOOLGIRL+T » Sáb Nov 10, 2012 17:52
A solução real da equação

é:
a) -2
b) -1
c) 0
d) 1
e) 2
-
SCHOOLGIRL+T
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Nov 07, 2012 08:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sáb Nov 10, 2012 18:05
Dica , multiplique os dois lados da igualdade por

. Com isso faça

, resolva para

, depois volte e resolva para

. Mas lembre -se

com isso

.
Vale lembrar a propriedade

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por SCHOOLGIRL+T » Sáb Nov 10, 2012 18:26
santhiago escreveu:Dica , multiplique os dois lados da igualdade por

. Com isso faça

, resolva para

, depois volte e resolva para

. Mas lembre -se

com isso

.
Vale lembrar a propriedade

.
Ah! Achei "x=2" mas, olha só. Depois que eu resolvi a equação k² -15x -16 = 0, eu encontrei 9 e -2/3. Igualando 9 a

, é que encontrei "x=2". Mas igualando -2/3 a

, também não deveria ter uma outra solução?
-
SCHOOLGIRL+T
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Nov 07, 2012 08:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Sáb Nov 10, 2012 18:44
Não, pois toda função do tipo

com

é sempre positivo, ou seja,

para todo valor real de

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sáb Nov 10, 2012 18:46
Que legal nem tido percebido , este exercício é da UFJF . Em relação ao exercício ,não tem outra solução , como a base é positiva

, então para todo x real ,

> 0 . Portanto não há solução para

. De fato a solução é

.Comente qualquer dúvida .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- QUESTÃO DE FUNÇÃO DA UFJF
por Maira » Sáb Dez 19, 2009 16:47
- 3 Respostas
- 2879 Exibições
- Última mensagem por Maira

Sáb Dez 19, 2009 19:27
Funções
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 3808 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
-
- Questão UFJF
por Guilherme Carvalho » Sex Mai 13, 2011 12:19
- 1 Respostas
- 1433 Exibições
- Última mensagem por MarceloFantini

Sex Mai 13, 2011 15:54
Trigonometria
-
- Questão UFJF
por Guilherme Carvalho » Ter Mai 31, 2011 15:42
- 1 Respostas
- 1971 Exibições
- Última mensagem por Claudin

Ter Mai 31, 2011 18:04
Funções
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5314 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.