por MrJuniorFerr » Seg Out 29, 2012 00:23
Olá a todos, tentei resolver o seguinte exercício pelo método de substituição:


A partir daqui, fica claro que a integral de

, mas ainda sim, continuei a resolvê-lo pelo método de substituição.
Daí, coloquei

e

E fiz o seguinte:

, como podem ver, não alterei o resultado da integração.
Como

,

, cortando o

do numerador com o

do denominador:



Ou seja, resultado incorreto...
O que eu fiz de errado?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por Russman » Seg Out 29, 2012 02:33
Você simplificou errado o integrando:

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MrJuniorFerr » Seg Out 29, 2012 02:37
Valeu Russman.
Pelo jeito então, deve-se simplificar ao máximo antes de integrar?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por Russman » Seg Out 29, 2012 03:09
Poupa trabalho.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Seg Out 29, 2012 07:24
Quero voltar a ressaltar que simplificar é sempre bom, mas em geral no resultado final. Existem simplificações que, dependendo da hora em que são feitos, mais atrapalham do que ajudam.
Em outras palavras Junior, não tente se agarrar à uma regra geral que resolverá todas as suas integrais. Isto não existe. Não sei se já ouviu esta frase clássica:
Derivar é técnico, integrar é arte.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Seg Out 29, 2012 07:37
Bom dia Russman e Marcelo.
Entendi Marcelo. De fato, pude perceber que integrar é mais complexo que derivar...
Mas enfim, alguma conclusão com o que aconteceu eu tenho que tirar, e acho q a conclusão que eu tirei foi que é realmente necessário simplificar o integrando anteriormente a integração ou como você disse, no resultado final.
Valeu Marcelo!
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Problema com resolucao
por gabrielnandi » Qui Jun 28, 2012 01:25
- 1 Respostas
- 1517 Exibições
- Última mensagem por Russman

Qui Jun 28, 2012 08:12
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Resolução incorreta?
por MrJuniorFerr » Dom Nov 11, 2012 23:04
- 4 Respostas
- 2375 Exibições
- Última mensagem por MrJuniorFerr

Seg Nov 12, 2012 20:34
Cálculo: Limites, Derivadas e Integrais
-
- Dois modos de falha
por rassis46 » Qui Abr 15, 2010 20:00
- 0 Respostas
- 1033 Exibições
- Última mensagem por rassis46

Qui Abr 15, 2010 20:00
Estatística
-
- [Integrais] Dúvida exercício
por MrJuniorFerr » Dom Out 28, 2012 16:18
- 8 Respostas
- 3993 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 18:38
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Dúvida exercício
por MrJuniorFerr » Dom Nov 11, 2012 10:51
- 5 Respostas
- 3225 Exibições
- Última mensagem por DanielFerreira

Dom Nov 11, 2012 13:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.