• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Dúvida exercício

[Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 16:18

Estou com dúvida no seguinte exercício:

\int x^2\sqrt{1+x} dx = \int x^2(1+x)^\frac{1}{2} dx

É possível fazer pelo método de substituição?

Tentei da seguinte forma:

u=1+x

\frac{du}{dx}=1

Mas não tem como fazer o x^2 virar 1 porque eu teria que colocar valores de x dentro da integral...
Como resolvê-lo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:03

Não está errado. Note que se u = 1+x, então x = u-1, portanto x^2 = (u-1)^2. Daí você terá

\int x^2 \sqrt{1+x} \, dx = \int (u-1)^2 \cdot u^{\frac{1}{2}} \, du.

Esta é simples de resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:23

\int (u-1)^2 du = \frac{(u-1)^3}{3} + C ?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:26

Não, você esqueceu de multiplicar por u^{\frac{1}{2}}. Expanda (u-1)^2, multiplique e aí sim terá a integral de um polinômio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:47

Ah sim, prossegui da seguinte forma:

\int (u^2-2u+1).u^\frac{1}{2} du

\int u^\frac{5}{2}-2u^\frac{3}{2}+u^\frac{1}{2} du

\frac{2}{7}u^\frac{7}{2}-\frac{4}{5}u^\frac{5}{2}+\frac{2}{3}u^\frac{3}{2}+C

\frac{2}{7}(1+x)^\frac{7}{2}-\frac{4}{5}(1+x)^\frac{5}{2}+\frac{2}{3}(1+x)^\frac{2}{3}+C

Se eu não errei nenhuma continha, é isso né?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:54

Sim, está correto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:17

Por que será que de acordo com o Wolframalpha, possíveis resultados seriam esta imagem em anexo e...
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg
Resultado simplificado
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg (5.75 KiB) Exibido 3979 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:18

e essa outra imagem em anexo.

Não estão muito diferentes do meu resultado?
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg
Outros possíveis resultados
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg (4.7 KiB) Exibido 3977 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 18:38

Vá no Wolfram, digite Expand[d], onde d é a expressão que encontrou. Verá que são iguais, ao expandir o resultado do Wolfram também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}