• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Dúvida exercício

[Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 16:18

Estou com dúvida no seguinte exercício:

\int x^2\sqrt{1+x} dx = \int x^2(1+x)^\frac{1}{2} dx

É possível fazer pelo método de substituição?

Tentei da seguinte forma:

u=1+x

\frac{du}{dx}=1

Mas não tem como fazer o x^2 virar 1 porque eu teria que colocar valores de x dentro da integral...
Como resolvê-lo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:03

Não está errado. Note que se u = 1+x, então x = u-1, portanto x^2 = (u-1)^2. Daí você terá

\int x^2 \sqrt{1+x} \, dx = \int (u-1)^2 \cdot u^{\frac{1}{2}} \, du.

Esta é simples de resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:23

\int (u-1)^2 du = \frac{(u-1)^3}{3} + C ?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:26

Não, você esqueceu de multiplicar por u^{\frac{1}{2}}. Expanda (u-1)^2, multiplique e aí sim terá a integral de um polinômio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:47

Ah sim, prossegui da seguinte forma:

\int (u^2-2u+1).u^\frac{1}{2} du

\int u^\frac{5}{2}-2u^\frac{3}{2}+u^\frac{1}{2} du

\frac{2}{7}u^\frac{7}{2}-\frac{4}{5}u^\frac{5}{2}+\frac{2}{3}u^\frac{3}{2}+C

\frac{2}{7}(1+x)^\frac{7}{2}-\frac{4}{5}(1+x)^\frac{5}{2}+\frac{2}{3}(1+x)^\frac{2}{3}+C

Se eu não errei nenhuma continha, é isso né?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:54

Sim, está correto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:17

Por que será que de acordo com o Wolframalpha, possíveis resultados seriam esta imagem em anexo e...
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg
Resultado simplificado
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg (5.75 KiB) Exibido 4049 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:18

e essa outra imagem em anexo.

Não estão muito diferentes do meu resultado?
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg
Outros possíveis resultados
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg (4.7 KiB) Exibido 4047 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 18:38

Vá no Wolfram, digite Expand[d], onde d é a expressão que encontrou. Verá que são iguais, ao expandir o resultado do Wolfram também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: