por MrJuniorFerr » Sex Out 12, 2012 11:51
Tem um exercício aqui que estou com dúvida:
Obtenha a medida angular em radianos entre a reta r e o plano 

e

Sabe-se que para obter o ângulo de uma reta e um plano, deve-se utilizar esta fórmula:

O vetor diretor

da reta é (0,1,-1) e o vetor normal

do plano é (0,0,1).
Apliquei na fórmula e cheguei que
![\theta=sen^-^1 \left(\frac{\sqrt[]{2}}{2} \right) \theta=sen^-^1 \left(\frac{\sqrt[]{2}}{2} \right)](/latexrender/pictures/4a5fc488da7c26d223dd99482b98f888.png)
Se eu fizesse a continha, daria 45º. Mas, o exercício quer em rad. Como eu faço isso?
Editando:
Ops, consegui fazer por regra de 3...




-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Sex Out 12, 2012 12:44
Uma observação: se você está usando o produto escalar (ou produto interno), então o resultado é o cosseno do ãngulo, não o seno.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Sex Out 12, 2012 13:13
MarceloFantini escreveu:Uma observação: se você está usando o produto escalar (ou produto interno), então o resultado é o cosseno do ãngulo, não o seno.
É nada Marcelo, eu também imaginava que fosse assim devido as fórmulas do produto escalar e vetorial, pois o do produto escalar contém o cosseno e a do vetorial o seno. Mas de acordo com o livro
Geometria Analítica - Alfredo Steinbruch e com o gabarito da minha lista de exercícios, é da seguinte forma:
Quando queremos o ângulo de dois planos, devemos usar quase essa mesma fórmula que postei, só trocando o vetor diretor

pelo vetor normal

do outro plano e trocando o seno por cosseno e quando queremos o ângulo de uma reta e um plano, devemos essa fórmula que postei com o seno.
Lembrando que para os dois tipos de exercícios, se usam o produto escalar na fórmula. Realmente eu também acho estranho.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Sex Out 12, 2012 13:38
Não faz sentido. Quando queremos o ângulo entre dois planos, apenas fazemos o produto escalar entre os vetores normais aos planos, logo

.
Se a reta e o vetor normal ao plano forem ortogonais o produto escalar entre eles será zero, que por sua fórmula indicará que o ângulo é zero entre eles, uma contradição. Você poderia citar o trecho em que o livro explica isto?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MrJuniorFerr » Sex Out 12, 2012 13:55
Marcelo, to de saída agora.. vou até a universidade, pois combinei com a professora para tirar algumas dúvidas quanto a lista, pois a minha prova é na próxima terça. Ao voltar, coloco aqui todos os detalhes.
Até mais
Editando: No máximo 16:30 estou de volta.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MrJuniorFerr » Sex Out 12, 2012 18:53
Desculpe a demora Marcelo, houve um imprevisto.
Tudo o que o livro diz sobre ângulo de retas e planos é:
Seja uma reta r com direção do vetor

e um plano

, sendo

um vetor normal a

.
O ângulo

da reta r com o plano

é o complemento do ângulo

que a reta r forma com uma reta normal ao plano.
Tendo em vista que

e, portanto,

, vem, de acordo com a fórmula


,

-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Sex Out 12, 2012 20:18
Agora tudo faz sentido.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ângulo entre reta e plano
por manuoliveira » Ter Mai 22, 2012 22:42
- 1 Respostas
- 2622 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 20:16
Geometria Analítica
-
- [GA - Estudo da Reta] Exercício de GA com reta e plano
por matheus0807 » Qui Jun 05, 2014 15:12
- 0 Respostas
- 2014 Exibições
- Última mensagem por matheus0807

Qui Jun 05, 2014 15:12
Geometria Analítica
-
- [Dúvida reta e plano]
por Andresa_s » Qua Ago 01, 2012 13:02
- 1 Respostas
- 1498 Exibições
- Última mensagem por MarceloFantini

Qua Ago 01, 2012 21:07
Geometria Espacial
-
- [Interseção de reta e plano] Dúvida exerc.
por MrJuniorFerr » Dom Out 14, 2012 17:50
- 9 Respostas
- 3845 Exibições
- Última mensagem por MarceloFantini

Dom Out 14, 2012 22:38
Geometria Analítica
-
- [Interseção de reta e plano] Dúvida exerc. 2
por MrJuniorFerr » Seg Out 15, 2012 00:35
- 3 Respostas
- 2049 Exibições
- Última mensagem por MarceloFantini

Seg Out 15, 2012 08:13
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.