• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação de planos] Dúvida exercício 5

[Equação de planos] Dúvida exercício 5

Mensagempor MrJuniorFerr » Qui Out 11, 2012 08:58

Olá pessoal, estou com dúvida no seguinte exercício:

Escreva as equações paramétricas da interseção dos planos \pi1: 2x+y-z=0 e \pi2: x+y+z=1

O primeiro passo é encontrar a interseção dos dois planos dados, ou seja, encontrar uma reta. Fiz isto, encontrei o ponto I(x,\frac{-3x}{2},\frac{1x}{2}). Desde então, atribui x=1 e x=2 e achei os pontos A(1,\frac{-3}{2},\frac{1}{2}) e B(2,-3,1) respectivamente. Fazendo \overrightarrow{AB}=(1,\frac{-3}{2},\frac{1}{2}), encontrei o vetor diretor dessa reta. Portanto, como podem ver, tenho 2 pontos e o vetor diretor da reta, ou seja, tenho a reta.
Mas, eis a questão... o que fazer agora? Tenho somente os dados de uma reta. Como achar as equações paramétricas do plano?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dúvida exercício 5

Mensagempor MarceloFantini » Qui Out 11, 2012 11:03

O resultado é uma reta. A interseção de dois planos será um plano se e somente se eles coincidirem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dúvida exercício 5

Mensagempor MrJuniorFerr » Qui Out 11, 2012 11:30

MarceloFantini escreveu:O resultado é uma reta. A interseção de dois planos será um plano se e somente se eles coincidirem.


Entendi Marcelo. Portanto, é só eu passar os dados da reta que obtive para uma equação paramétrica da reta e esta mesma será a equação paramétrica do plano.
Obrigado
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Dúvida exercício 5

Mensagempor MarceloFantini » Qui Out 11, 2012 11:37

Será equação paramétrica de uma reta, que será a equação paramétrica da interseção dos planos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação de planos] Dúvida exercício 5

Mensagempor MrJuniorFerr » Qui Out 11, 2012 12:43

MarceloFantini escreveu:Será equação paramétrica de uma reta, que será a equação paramétrica da interseção dos planos.


Foi uma falha na minha interpretação...
Independentemente se a interseção dos dois planos forem uma reta ou um plano, a equação paramétrica será o obtido a partir desta interseção.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.