• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação com Letras

Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 17:52

07. Se \alpha e \beta são dois números reais e 2^{\alpha} = m e 2^{\beta} = n, então 4^\alpha^-^\beta é igual a:

Já tentei mas, pelo visto, eu tenho que saber quanto é \alpha e \beta para depois subtrair \alpha - \beta
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor Arkanus Darondra » Ter Jul 17, 2012 18:16

4^{\alpha-\beta} = \frac{4^{\alpha}}{4^{\beta}} = \frac{2^{2\alpha}}{2^{2\beta}} = 2^{m-n}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação com Letras

Mensagempor e8group » Ter Jul 17, 2012 18:25

faça \left(\frac{m}{n}\right)^{2} ,logo obterá 4^{\alpha - \theta}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 19:20

Não entendi santhiago.

como você consegue ser tão inteligente?
Eu já assisti todas as vídeo aulas sobre potenciação, já resolvi vários exercícios (só os fáceis) e mesmo assim.
Eu pélo para resolver um exercício, como esse apresentado. Eu já li as teorias em livros, conheço todas as propriedades da potenciaçãoe mesmo assim, continuo burr
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor Arkanus Darondra » Ter Jul 17, 2012 19:37

Bielto escreveu:Eu já assisti todas as vídeo aulas sobre potenciação, já resolvi vários exercícios (só os fáceis) e mesmo assim.
Eu pélo para resolver um exercício, como esse apresentado. Eu já li as teorias em livros, conheço todas as propriedades da potenciação

Como nas propriedades de potenciação a recíproca é verdadeira, é importante que você, ao estudá-las, pratique-as como tal,
até porque a maioria dos exercícios são assim.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação com Letras

Mensagempor DanielFerreira » Ter Jul 17, 2012 19:43

Olá Bielto,
boa noite!

4^{\alpha - \beta} =


(4)^{\alpha - \beta} =


(2^2)^{\alpha - \beta} =


2^{2\alpha - 2\beta}


2^{2\alpha} \times 2^{- 2\beta} =


\frac{2^{2\alpha}}{2^{2\beta}} =


\frac{2^{\alpha} \times 2^{\alpha}}{2^{\beta} \times 2^{\beta}} =


\frac{m \times m}{n \times n} =


\frac{m^2}{n^2}


Espero ter ajudado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Potenciação com Letras

Mensagempor Arkanus Darondra » Ter Jul 17, 2012 19:47

Arkanus Darondra escreveu:4^{\alpha-\beta} = \frac{4^{\alpha}}{4^{\beta}} = \frac{2^{2\alpha}}{2^{2\beta}} = 2^{m-n}

Outro modo de desenvolver seria:
\frac{2^{2\alpha}}{2^{2\beta}} = (\frac{2\alpha}{2\beta})^2 = (\frac{m}{n})^2
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 20:18

Poxa vida! Deve ser bom ser inteligente. Eu juro que tento pessoal, mas, sou realmente burro.
Valeu pela ajuda.
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 20:40

Pessoal, 4^{\alpha -\beta} = \left(\frac{4^\alpha }{4^\beta}\right) São recíprocas?
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor MarceloFantini » Ter Jul 17, 2012 20:42

Você não é burro, é apenas a primeira vez que você está vendo o assunto e está se familiarizando com as propriedades. Demora até se acostumar. A persistência é fundamental agora.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 20:47

Marcelo, 4^{\alpha -\beta} = \left(\frac{4^\alpha }{4^\beta}\right) São recíprocas de qual propriedade?
E por quê? Você multiplicou 2^2^{\alpha} x 2^-^{2\beta} ? É a recíproca do que? ou de qual propriedade?
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor MarceloFantini » Ter Jul 17, 2012 20:58

As propriedades de potenciação dizem que a^{m+n} = a^m \times a^n e a^{m-n} = \frac{a^m}{a^n}, sendo que a é um número maior que zero. Normalmente as pessoas aprendem a usar "em um sentido apenas", ou seja, quando tem potências multiplicando elas somam e quando tem potências dividindo subtraem. Isto é reforçado por uma bateria de exercício em que apenas isso é feito.

Porém, é muito importante usar também que quando temos uma potência em soma podemos escrevê-la como produto de potências, e igualmente quando temos uma potência em subtração podemos escrevê-la como divisão de potências. Note que é uma igualdade, então nas condições dadas sempre é válido. Quanto mais cedo você tomar consciência disto, melhor.

Sobre a "reciprocidade", foi usado no sentido que \frac{4^{\alpha}}{4^{\beta}} \implies 4^{\alpha - \beta}, e a recíproca é verdadeira, 4^{\alpha - \beta} = \frac{4^{\alpha}}{4^{\beta}}.

No caso 2^{2 \alpha} \times 2^{2 \beta} foi primeiro usada a propriedade que a^{m+n} = a^m \times a^n.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação com Letras

Mensagempor Bielto » Ter Jul 17, 2012 21:44

Marcelo, eu estava fazendo esse exercício aqui e surgiu a seguinte dúvida.

Na parte, {2}^{2a}.{2}^-^{2b} = \frac{2^a^2}{2^2^b} o por quê? Que o sinal do b passou para baixo positivo?

Me desculpa ficar te amolando cara, juro que essa é a última pergunta.
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: Potenciação com Letras

Mensagempor MarceloFantini » Ter Jul 17, 2012 22:22

Sim, é verdade que 2^{-2b} = \frac{1}{2^{2b}}. Perceba que 2^{2a} \cdot 2^{-2b} = 2^{2a} \cdot \frac{1}{2^{2b}}, mas quando multiplicamos uma fração com numerador um por alguma coisa, escrevemos essa alguma coisa dividida pelo denominador, daí 2^{2a} \cdot 2^{-2b} = 2^{2a} \cdot \frac{1}{2^{2b}} = \frac{2^{2a}}{2^{2b}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D