• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções Dúvida

Funções Dúvida

Mensagempor Louis » Seg Jul 09, 2012 23:56

Olá, já quebrei a minha cabeça de todas as formas possíveis com esta questão. Com o objetivo de mostrar o gráfico da função tirei uma foto.

Agradeço a ajuda.
Anexos
IMG_0438.JPG
Louis
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Jul 09, 2012 17:48
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Dúvida

Mensagempor e8group » Ter Jul 10, 2012 00:28

Oque você tentou ?

Note que I = (a , 1/4) \in  g e f isto implica que g(a) = f(a) = \frac{1}{4} ou seja ,basta encontrar o valor para a qual a imagem da função g e f equivale a 1/4 .

Uma vez encontrado o valor para a tal que f(a) = \frac{1}{4} = 2^{2a+3} ,em consequência obterá k .Pois g(a) = \frac{1}{4} =( \frac{2}{3} )^{2a+3} + k . Daí para concluir o exercício basta calcular g(f(-2)) que é equivalente a g(\frac{1}{2}) já que f(-2) = \frac{1}{2}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Funções Dúvida

Mensagempor Louis » Ter Jul 10, 2012 10:05

Estava tentando isolar o x para depois substituí-lo na função, pelo visto estava me guiando pelo caminho errado. Como faço para encontrar o valor para a qual a imagem da função g e f equivale a 1/4?
Louis
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Jul 09, 2012 17:48
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Dúvida

Mensagempor Russman » Ter Jul 10, 2012 10:20

f(a) = \frac{1}{4} \Rightarrow 2^{2a+3} = \frac{1}{2^{2}} \Rightarrow 2^{2a+5} = 1 = 2^{0} \Rightarrow 2a+5 = 0 \Rightarrow a = \frac{-5}{2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Funções Dúvida

Mensagempor e8group » Ter Jul 10, 2012 10:47

\begin{cases} \frac{1}{4}= 2^{2a+3} \\ \frac{1}{4}= \left(\frac{2}{3} \right )^{2a +3}+k \end{cases}

Por um lado temos :

\frac{1}{4}= 2^{-2}=2^{2a+3} como temos as bases da igualdade iguais(caso não acredite aplique logaritmo de mesma base em ambos lados da igualdade )-2=2a+3 \therefore a = - \frac{5}{2} .Entretanto por outro lado:

\frac{1}{4}= \left(\frac{2}{3} \right )^{2a +3}+k ,lembrando que a = \frac{1}{2} ,temos :

2^{-2} = \left(\frac{2}{3} \right )^{4 }+k ,ou seja k =2^{-2}  -\left(\frac{2}{3} \right )^{4 } .Daí só calcular g o f (-2)
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Funções Dúvida

Mensagempor Louis » Ter Jul 10, 2012 11:22

Santhiago, se de acordo com as funções que você comparou, o resultado do a obtido foi -5/2, por que quando você substituiu este valor para encontrar o k você considerou como sendo 1/2? Obrigado por esclarecer como você chegou até o resultado, se não dissesse que aplicou as bases da igualdade, ficaria perdido. Tentei calcular o gof (-2), mas não creio estar fazendo a conta do jeito certo, isso porque encontrei um intervalo correspondente ao do número 4 e acabo de conferir que a resposta certa é o número 2.

Obrigado Russman por ter postado.
Louis
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Jul 09, 2012 17:48
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Dúvida

Mensagempor e8group » Ter Jul 10, 2012 12:29

Louis escreveu:Santhiago, se de acordo com as funções que você comparou, o resultado do a obtido foi -5/2, por que quando você substituiu este valor para encontrar o k você considerou como sendo 1/2? Obrigado por esclarecer como você chegou até o resultado, se não dissesse que aplicou as bases da igualdade, ficaria perdido. Tentei calcular o gof (-2), mas não creio estar fazendo a conta do jeito certo, isso porque encontrei um intervalo correspondente ao do número 4 e acabo de conferir que a resposta certa é o número 2.


Oops !

Não sei porque fiz isso (haha) ....

2^{-2}= \left(\frac{2}{3} \right )^{2(-\frac{5}{2}+3)}+k \Longrightarrow \frac{1}{4}=\left(\frac{3}{2}\right )^{2}  + k \Longrightarrow \frac{1}{4}-\left(\frac{3}{2}\right )^{2} =\left(\frac{3}{2}\right )^{2}-\left(\frac{3}{2}\right )^{2} +k \Longrightarrow \frac{1}{4}-\frac{9}{4}= k \therefore k = -2 .



Assim , temos :

g(x)= \left( \frac{2}{3}\right )^{2x +3} -2


Ou seja :

g(f(-2))= g(1/2) = \left( \frac{2}{3}\right )^{4} -2  = \frac{16}{81} - \frac{162}{81} = - \frac{146}{81} \approx - 1,8


como -1,8 \in [-2,-1) a resposta é (02) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Funções Dúvida

Mensagempor Louis » Ter Jul 10, 2012 13:10

(risos). Uma última pergunta sobre a questão. Como você chegou a conclusão que f(-2) = 1\2?
Louis
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Jul 09, 2012 17:48
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funções Dúvida

Mensagempor e8group » Ter Jul 10, 2012 18:36

Louis escreveu:(risos). Uma última pergunta sobre a questão. Como você chegou a conclusão que f(-2) = 1\2?


pela lei de formação de f temos que :

f(x) = 2 ^{2x +3 } então f(-2) = 2 ^{2(-2) +3 } = 2 ^{-4 +3 }= 2 ^{-1 }= \frac{1}{2} OK !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.